2015, 5(4): 369-380. doi: 10.3934/naco.2015.5.369

Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control

1. 

School of Mathematical Science, Huaiyin Normal University, No.111, Changjiang West Road, Huai'an 223300, China, China

2. 

School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, 264005

Received  January 2015 Revised  October 2015 Published  October 2015

In fed-batch culture, feeding substrates is to provide sufficient nutrition and reduce inhibitions simultaneously for cells growth. Hence, when and how much to feed substrates are important during the process. In this paper, a nonlinear impulsive controlls system, in which the volume of feeding is taken as the control function, is proposed to formulate the fed-batch fermentation process.In the system, both impulsive moments and jumps size of state are state-dependent. Some important properties of the system are investigated. To maximize the concentration of target product at the terminal time, an optimal control model involving the nonlinear state-dependent impulsive controlled system is presented.The optimal control problem is subject to the continuous state inequality constraint and the control constraint. The existence of optimal control is also obtained. In order to derive the optimality conditions, the optimal control model is transcribed into an equivalent one by treating the constraints. Finally, the optimality conditions of the optimal control model are obtained via calculus of variations.
Citation: Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369
References:
[1]

J. Angelova and A. Dishliev, Optimization problems for one-impulsive models from population dynamics,, Nonlinear Anal., 39 (2000), 483.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[2]

S. A. Attia, V. Azhmyakov and J. Raisch, On an optimization problem for a class of impulsive hybrid systems,, Discrete Event. Dyn. Syst., 20 (2010), 215.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[3]

V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems,, Nonlinear Anal. Hyb. Syst., 2 (2008), 1089.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[4]

H. Biebl, K. Menzel, A. P. Zeng and W. D. Deckwer, Microbial production of 1,3-propanediol,, Appl. Microbial Biotech., 52 (1999), 289.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[5]

P. Billingsley, Convergence of Probability Measures,, JohnWiley & Sons, (1968).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[6]

C. X. Gao, K. Z. Li, E. M. Feng and Z. L. Xiu, Nonlinear impulsive system of fed-batch culture in fermentative production and its properties,, Chaos Solutions Fractals, 28 (2006), 271.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[7]

C. X. Gao, Y. H. Lang, E. M. Feng and Z. L. Xiu, Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control,, J. Appl. Math. Comput., 19 (2005), 203.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[8]

S. H. Hou and K. H. Wong, Optimal impulsive control problem with application to human immunodeficiency virus treatment,, J. Optim. Theory Appl., 151 (2011), 385.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[9]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations,, World Scientific, (1989).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[10]

M. Mccoy, Chemical makers try biotech paths,, Chem. Eng. News, 76 (1998), 13.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[11]

K. Menzel, A. P. Zeng and W. D. Deckwer, High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae,, Enzyme Microb. Technol., 20 (1997), 82.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[12]

C. Liu, Z. Gong and E. Feng, Optimal control for a nonlinear time-delay system in fed-batch fermentation,, Pac. J. Optim., 9 (2013), 595.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[13]

C. Liu and Z. Gong, Modelling and optimal control of a time-delayed switched system in fed-batch process,, J. Franklin Inst., 35 (2014), 840.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[14]

C. Liu, Sensitivity analysis and parameter identification for a nonlinear time-delay system in microbial fed-batch process,, Appl. Math. Model., 38 (2014), 1449.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[15]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, J. Optim. Theory Appl., 98(1) (1998), 65.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[16]

H. Y. Wang, E. M. Fenga and Z. L. Xiu, Optimality condition of the nonlinear impulsive system in fed-batch fermentation,, Nonlinear Anal. TMA, 68 (2008), 12.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[17]

L. Wang, Modelling and regularity of nonlinear impulsive switching dynamical system in fed-batch culture,, Abstr. Appl. Anal., (2012).  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[18]

Z. L. Xiu, A. P. Zeng and W. D. Deckwer, Multiplicity and stability analysis of microorganisms in continuous culture: effects of metabolic overflow and growth inhibition,, Biotechnol. Bioeng., 57 (1998), 251.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[19]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, J. Dalian Univ. of Technol., 44 (2000), 428.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[20]

A. P. Zeng and H. Biebl, Bulk-chemicals from biotechnology: the case of microbial production of 1,3-propanediol and the new trends,, Adv. Biochem. Eng. Biotechnol., 74 (2002), 239.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[21]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Günzel and W. D. Deckwer, Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation,, Biotechnol. Bioeng., 44 (1994), 902.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

show all references

References:
[1]

J. Angelova and A. Dishliev, Optimization problems for one-impulsive models from population dynamics,, Nonlinear Anal., 39 (2000), 483.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[2]

S. A. Attia, V. Azhmyakov and J. Raisch, On an optimization problem for a class of impulsive hybrid systems,, Discrete Event. Dyn. Syst., 20 (2010), 215.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[3]

V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems,, Nonlinear Anal. Hyb. Syst., 2 (2008), 1089.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[4]

H. Biebl, K. Menzel, A. P. Zeng and W. D. Deckwer, Microbial production of 1,3-propanediol,, Appl. Microbial Biotech., 52 (1999), 289.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[5]

P. Billingsley, Convergence of Probability Measures,, JohnWiley & Sons, (1968).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[6]

C. X. Gao, K. Z. Li, E. M. Feng and Z. L. Xiu, Nonlinear impulsive system of fed-batch culture in fermentative production and its properties,, Chaos Solutions Fractals, 28 (2006), 271.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[7]

C. X. Gao, Y. H. Lang, E. M. Feng and Z. L. Xiu, Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control,, J. Appl. Math. Comput., 19 (2005), 203.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[8]

S. H. Hou and K. H. Wong, Optimal impulsive control problem with application to human immunodeficiency virus treatment,, J. Optim. Theory Appl., 151 (2011), 385.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[9]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations,, World Scientific, (1989).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[10]

M. Mccoy, Chemical makers try biotech paths,, Chem. Eng. News, 76 (1998), 13.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[11]

K. Menzel, A. P. Zeng and W. D. Deckwer, High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae,, Enzyme Microb. Technol., 20 (1997), 82.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[12]

C. Liu, Z. Gong and E. Feng, Optimal control for a nonlinear time-delay system in fed-batch fermentation,, Pac. J. Optim., 9 (2013), 595.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[13]

C. Liu and Z. Gong, Modelling and optimal control of a time-delayed switched system in fed-batch process,, J. Franklin Inst., 35 (2014), 840.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[14]

C. Liu, Sensitivity analysis and parameter identification for a nonlinear time-delay system in microbial fed-batch process,, Appl. Math. Model., 38 (2014), 1449.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[15]

Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, On a class of optimal control problems with state jumps,, J. Optim. Theory Appl., 98(1) (1998), 65.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[16]

H. Y. Wang, E. M. Fenga and Z. L. Xiu, Optimality condition of the nonlinear impulsive system in fed-batch fermentation,, Nonlinear Anal. TMA, 68 (2008), 12.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[17]

L. Wang, Modelling and regularity of nonlinear impulsive switching dynamical system in fed-batch culture,, Abstr. Appl. Anal., (2012).  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[18]

Z. L. Xiu, A. P. Zeng and W. D. Deckwer, Multiplicity and stability analysis of microorganisms in continuous culture: effects of metabolic overflow and growth inhibition,, Biotechnol. Bioeng., 57 (1998), 251.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[19]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, J. Dalian Univ. of Technol., 44 (2000), 428.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[20]

A. P. Zeng and H. Biebl, Bulk-chemicals from biotechnology: the case of microbial production of 1,3-propanediol and the new trends,, Adv. Biochem. Eng. Biotechnol., 74 (2002), 239.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[21]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Günzel and W. D. Deckwer, Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation,, Biotechnol. Bioeng., 44 (1994), 902.  doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[20]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]