• Previous Article
    Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol
  • NACO Home
  • This Issue
  • Next Article
    Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control
2015, 5(4): 381-392. doi: 10.3934/naco.2015.5.381

A stochastic model for microbial fermentation process under Gaussian white noise environment

1. 

School of Science, Dalian Jiaotong University,Dalian, MO 116028, China, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, MO 116023, China

3. 

Department of Mathematics, The George Washington University,Washington DC 20052, United States

4. 

Department of Mathematics, Loyola Marymount University, Los Angeles CA 90045, United States

Received  March 2015 Revised  October 2015 Published  October 2015

In this paper, we propose a stochastic model for the microbial fermentation process under the framework of white noise analysis, where Gaussian white noises are used to model the environmental noises and the specific growth rate is driven by Gaussian white noises. In order to keep the regularity of the terminal time, the adjustment factors are added in the volatility coefficients of the stochastic model. Then we prove some fundamental properties of the stochastic model: the regularity of the terminal time, the existence and uniqueness of a solution and the continuous dependence of the solution on the initial values.
Citation: Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381
References:
[1]

I. Albert, R. Pouillot and J.-B. Denis, Stochastically modeling listeria monocytogenes growth in farm tank milk,, Risk Analysis, 25 (2005), 1171.   Google Scholar

[2]

H. Biebl, K. Menzel, A. P. Zeng and W. Deckwer, Microbial production of 1,3-propanediol,, Applied Microbiology and Biotechnology, 52 (1999), 297.   Google Scholar

[3]

R. Bona and A. Moser, Modeling of l-glutamic acid production with Corynebacterium glutamicum under biotin limitation,, Bioprocess Engineering, 17 (1997), 139.   Google Scholar

[4]

C. Hartmann and A. Delgado, Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure,, Journal of Biomechanics, 37 (2004), 977.   Google Scholar

[5]

H. J. Henzler, Particle stress in bioreactors,, Advances in Biochemical Engineering, 67 (2000), 35.   Google Scholar

[6]

H. Holden, B. Øksendal, J. Ubøe and T. S. Zhang, Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach,, 2nd edition, (2010).  doi: 10.1007/978-0-387-89488-1.  Google Scholar

[7]

A. Kasperski, Modelling of cells bioenergetics,, Acta Biotheoretica, 56 (2008), 233.   Google Scholar

[8]

A. Kasperski and T. Miskiewicz, Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter,, Biochemical Engineering Journal, 40 (2008), 321.   Google Scholar

[9]

Z. Kutalik, M. Razaz and J. Baranyi, Connection between stochastic and deterministic modelling of microbial growth,, Journal of Theoretical Biology, 232 (2005), 285.  doi: 10.1016/j.jtbi.2004.08.013.  Google Scholar

[10]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation,, Discrete and Continuous Dynamical Systems, 24 (2009), 523.  doi: 10.3934/dcds.2009.24.523.  Google Scholar

[11]

B. Ø ksendal and A. Sulem, Applied Stochastic Control of Jump Diffusion,, 2nd edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[12]

B. Ø ksendal, Stochastic Differential Equations,, 6nd edition, (2005).   Google Scholar

[13]

H. J. Rehm and G. Reed, Microbial Fundamentals,, Verlag Chemie, (1981).   Google Scholar

[14]

K. Schügerl, Bioreaction Engineering: Reactions Involving Microorganisms and Cells: Fundamentals, Thermodynamics, Formal Kinetics, Idealized Reactor Types and Operation,, Wiley, (1987).   Google Scholar

[15]

T. K. Soboleva, A. E. Filippov, A. B. Pleasants, R. J. Jones and G. A. Dykes, Stochastic modelling of the growth of a microbial population under changing temperature regimes,, International Journal of Food Microbiology, 64 (2001), 317.   Google Scholar

[16]

S. Suresh, N. S. Khan, V. C. Srivastava and I. M. Mishra, Kinetic modeling and sensitivity analysis of kinetic parameters for $l$-glutamic acid production using Corynebacterium glutamicum,, International Journal of Chemical Reactor Engineering, 7 (2009).   Google Scholar

[17]

Y. Tian, A. Kasperski, K. Sun and Lansun Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect,, BioSystems, 104 (2011), 77.   Google Scholar

[18]

M. K. Toma, M. P. Rukilisha, J. J. Vanags, M. O. Zeltina, M. P. Leite, N. I. Galinina, U. E. Viesturs and R. P. Tengerdy, Inhibition of microbial growth and metabolism by excess turbulence,, Biotechnology and Bioengineering, 38 (2000), 552.   Google Scholar

[19]

L. Wang, Z. Xiu and E. Feng, A stochastic model of microbial bioconversion process in batch culture,, International journal of Chemical reactor engineering, 9 (2011).   Google Scholar

[20]

L. Wang, Z. Xiu and E. Feng, Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture,, Nonlinear Analysis: Modelling and Control, 18 (2013), 99.   Google Scholar

show all references

References:
[1]

I. Albert, R. Pouillot and J.-B. Denis, Stochastically modeling listeria monocytogenes growth in farm tank milk,, Risk Analysis, 25 (2005), 1171.   Google Scholar

[2]

H. Biebl, K. Menzel, A. P. Zeng and W. Deckwer, Microbial production of 1,3-propanediol,, Applied Microbiology and Biotechnology, 52 (1999), 297.   Google Scholar

[3]

R. Bona and A. Moser, Modeling of l-glutamic acid production with Corynebacterium glutamicum under biotin limitation,, Bioprocess Engineering, 17 (1997), 139.   Google Scholar

[4]

C. Hartmann and A. Delgado, Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure,, Journal of Biomechanics, 37 (2004), 977.   Google Scholar

[5]

H. J. Henzler, Particle stress in bioreactors,, Advances in Biochemical Engineering, 67 (2000), 35.   Google Scholar

[6]

H. Holden, B. Øksendal, J. Ubøe and T. S. Zhang, Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach,, 2nd edition, (2010).  doi: 10.1007/978-0-387-89488-1.  Google Scholar

[7]

A. Kasperski, Modelling of cells bioenergetics,, Acta Biotheoretica, 56 (2008), 233.   Google Scholar

[8]

A. Kasperski and T. Miskiewicz, Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter,, Biochemical Engineering Journal, 40 (2008), 321.   Google Scholar

[9]

Z. Kutalik, M. Razaz and J. Baranyi, Connection between stochastic and deterministic modelling of microbial growth,, Journal of Theoretical Biology, 232 (2005), 285.  doi: 10.1016/j.jtbi.2004.08.013.  Google Scholar

[10]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation,, Discrete and Continuous Dynamical Systems, 24 (2009), 523.  doi: 10.3934/dcds.2009.24.523.  Google Scholar

[11]

B. Ø ksendal and A. Sulem, Applied Stochastic Control of Jump Diffusion,, 2nd edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[12]

B. Ø ksendal, Stochastic Differential Equations,, 6nd edition, (2005).   Google Scholar

[13]

H. J. Rehm and G. Reed, Microbial Fundamentals,, Verlag Chemie, (1981).   Google Scholar

[14]

K. Schügerl, Bioreaction Engineering: Reactions Involving Microorganisms and Cells: Fundamentals, Thermodynamics, Formal Kinetics, Idealized Reactor Types and Operation,, Wiley, (1987).   Google Scholar

[15]

T. K. Soboleva, A. E. Filippov, A. B. Pleasants, R. J. Jones and G. A. Dykes, Stochastic modelling of the growth of a microbial population under changing temperature regimes,, International Journal of Food Microbiology, 64 (2001), 317.   Google Scholar

[16]

S. Suresh, N. S. Khan, V. C. Srivastava and I. M. Mishra, Kinetic modeling and sensitivity analysis of kinetic parameters for $l$-glutamic acid production using Corynebacterium glutamicum,, International Journal of Chemical Reactor Engineering, 7 (2009).   Google Scholar

[17]

Y. Tian, A. Kasperski, K. Sun and Lansun Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect,, BioSystems, 104 (2011), 77.   Google Scholar

[18]

M. K. Toma, M. P. Rukilisha, J. J. Vanags, M. O. Zeltina, M. P. Leite, N. I. Galinina, U. E. Viesturs and R. P. Tengerdy, Inhibition of microbial growth and metabolism by excess turbulence,, Biotechnology and Bioengineering, 38 (2000), 552.   Google Scholar

[19]

L. Wang, Z. Xiu and E. Feng, A stochastic model of microbial bioconversion process in batch culture,, International journal of Chemical reactor engineering, 9 (2011).   Google Scholar

[20]

L. Wang, Z. Xiu and E. Feng, Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture,, Nonlinear Analysis: Modelling and Control, 18 (2013), 99.   Google Scholar

[1]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[2]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[5]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[7]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[8]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[9]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[10]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[11]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[12]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[13]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[14]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[15]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[16]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[17]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[18]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[19]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[20]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

[Back to Top]