2015, 5(4): 393-403. doi: 10.3934/naco.2015.5.393

Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol

1. 

School of Mathematical Science, Dalian University of Technology, Linggong Road, Dalian, Liaoning 116024, China, China

Received  April 2015 Revised  October 2015 Published  October 2015

The background of this paper is the production of 1,3-PD by batch fermentation of glycerol, supposed that glycerol and 1,3-PD pass the cell membrane by passive diffusion with active transportation. We present a nonlinear enzyme-catalytic dynamical system with genetic regulation and our purpose is to identify these parameters in the dynamical system. Since the intracellular substance concentrations are immeasurable, we refer to the robustness definition of parameter disturbance in biological system, then we establish a parameter identification model. We prove the existence of the solution to the optimization model. At last, we get the parameters of dynamical systems by particle swarm algorithm. Numerical results show that the optimization algorithm is valid and the genetic regulations can help to understand the intracellular reaction process.
Citation: Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393
References:
[1]

C. X. Gao, Z. T. Wang, E. M. Feng and Z. L. Xiu, Parameter identification and optimization of process for bio-dissimilation of glycerol to 1,3-propanediol in batch culture, Journal of Dalian University of Technology, 46 (2006), 771-774.

[2]

Z. H. Gong, E. M. Feng and Z. L. Xiu, Identification of specific growth rate and optimization algorithm in microbial batch culture, Journal of Dalian University of Technology, 49 (2009), 611-616.

[3]

Z. G. Jiang, J. L. Yuan and E. M. Feng, Robust identification and its properties of nonlinear bilevel multi-stage dynamic system, Applied Mathematics and Computation, 219 (2013), 6979-6985. doi: 10.1016/j.amc.2012.12.082.

[4]

H. Kitano, Biological robustness, Nat. Rev. Genet., 5 (2004), 826-837.

[5]

D. H. Liu, H. J. Liu and K. K. Cheng, Research progress on the production of l,3-propanediol by fermentation, Journal of Microbiolog, 4 (2000), 300-302.

[6]

C. Y. Liu, L. Yin, E. M. Feng and Z. L. Xiu, Modeling of microbial continuous fermentations and identifying of intracellular kinetic parameters, Journal of Dalian University of Technology, 51 (2011), 458-463.

[7]

Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu and A. P. Zeng, Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane, Biochemical Engineering Journal, 38 (2008), 22-32.

[8]

Y. Q. Sun, Nonlinear Mathematical Simulation and Analysis of Enzyme-Eatalytic Kinetics and Genetic Regulation for Glycerol Dissimilation by Klebsiella Pneumoniae, Dalian: Dalian university of technology, 2010.

[9]

L. Wang, J. X. Ye, E. M. Feng and Z. L. Xiu, An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification, Nonlinear Analysis: Hybrid Systems, 3 (2009), 455-462. doi: 10.1016/j.nahs.2009.03.003.

[10]

J. Wang, J. X. Ye, E. M. Feng, H. C. Yin and Z. L. Xiu, Modelling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol, Mathematical and Computer Modelling, 54 (2011), 618-624. doi: 10.1016/j.mcm.2011.03.005.

[11]

J. Wang, Modelling and Optimization of a Class of Nonlinear Enzyme-Catalysis Hybrid System, Dalian: Dalian university of technology, 2012.

[12]

Z. L. Xiu and A. P. Zeng, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol, Journal of Dalian University of Technology, 40 (2000), 428-433.

[13]

A. P. Zeng, H. Biebl and et al., Multiple product and growth modeling of clostridium butyicum and Klebsiella pneumoniae in fermentation, Biotechnol., 44 (1994), 902-911.

[14]

Y. D. Zhang, Y. J. Zhang and E. M. Feng, Robustness analysis of microbio continuous fermentation based on parallel computing, Journal of Biomathematics, 3 (2011), 524-532.

[15]

C. Zhou, H. B. Gao and L. Gao, Particle swarm optimization (PSO) algorithm 3, Application Research of Computers, 12 (2003), 7-11.

show all references

References:
[1]

C. X. Gao, Z. T. Wang, E. M. Feng and Z. L. Xiu, Parameter identification and optimization of process for bio-dissimilation of glycerol to 1,3-propanediol in batch culture, Journal of Dalian University of Technology, 46 (2006), 771-774.

[2]

Z. H. Gong, E. M. Feng and Z. L. Xiu, Identification of specific growth rate and optimization algorithm in microbial batch culture, Journal of Dalian University of Technology, 49 (2009), 611-616.

[3]

Z. G. Jiang, J. L. Yuan and E. M. Feng, Robust identification and its properties of nonlinear bilevel multi-stage dynamic system, Applied Mathematics and Computation, 219 (2013), 6979-6985. doi: 10.1016/j.amc.2012.12.082.

[4]

H. Kitano, Biological robustness, Nat. Rev. Genet., 5 (2004), 826-837.

[5]

D. H. Liu, H. J. Liu and K. K. Cheng, Research progress on the production of l,3-propanediol by fermentation, Journal of Microbiolog, 4 (2000), 300-302.

[6]

C. Y. Liu, L. Yin, E. M. Feng and Z. L. Xiu, Modeling of microbial continuous fermentations and identifying of intracellular kinetic parameters, Journal of Dalian University of Technology, 51 (2011), 458-463.

[7]

Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu and A. P. Zeng, Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane, Biochemical Engineering Journal, 38 (2008), 22-32.

[8]

Y. Q. Sun, Nonlinear Mathematical Simulation and Analysis of Enzyme-Eatalytic Kinetics and Genetic Regulation for Glycerol Dissimilation by Klebsiella Pneumoniae, Dalian: Dalian university of technology, 2010.

[9]

L. Wang, J. X. Ye, E. M. Feng and Z. L. Xiu, An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification, Nonlinear Analysis: Hybrid Systems, 3 (2009), 455-462. doi: 10.1016/j.nahs.2009.03.003.

[10]

J. Wang, J. X. Ye, E. M. Feng, H. C. Yin and Z. L. Xiu, Modelling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol, Mathematical and Computer Modelling, 54 (2011), 618-624. doi: 10.1016/j.mcm.2011.03.005.

[11]

J. Wang, Modelling and Optimization of a Class of Nonlinear Enzyme-Catalysis Hybrid System, Dalian: Dalian university of technology, 2012.

[12]

Z. L. Xiu and A. P. Zeng, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol, Journal of Dalian University of Technology, 40 (2000), 428-433.

[13]

A. P. Zeng, H. Biebl and et al., Multiple product and growth modeling of clostridium butyicum and Klebsiella pneumoniae in fermentation, Biotechnol., 44 (1994), 902-911.

[14]

Y. D. Zhang, Y. J. Zhang and E. M. Feng, Robustness analysis of microbio continuous fermentation based on parallel computing, Journal of Biomathematics, 3 (2011), 524-532.

[15]

C. Zhou, H. B. Gao and L. Gao, Particle swarm optimization (PSO) algorithm 3, Application Research of Computers, 12 (2003), 7-11.

[1]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[2]

Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial and Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168

[3]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[4]

Yanan Mao, Caixia Gao, Ruidong Yan, Aruna Bai. Modeling and identification of hybrid dynamic system in microbial continuous fermentation. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 359-368. doi: 10.3934/naco.2015.5.359

[5]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[6]

Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009

[7]

Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001

[8]

Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042

[9]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1709-1721. doi: 10.3934/jimo.2021040

[10]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[11]

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573

[12]

Jingang Zhai, Guangmao Jiang, Jianxiong Ye. Optimal dilution strategy for a microbial continuous culture based on the biological robustness. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 59-69. doi: 10.3934/naco.2015.5.59

[13]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[14]

Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429

[15]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[16]

Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks and Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113

[17]

Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems and Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025

[18]

Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial and Management Optimization, 2018, 14 (2) : 817-831. doi: 10.3934/jimo.2017077

[19]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375

[20]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

 Impact Factor: 

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]