• Previous Article
    Optimal dilution strategy for a microbial continuous culture based on the biological robustness
  • NACO Home
  • This Issue
  • Next Article
    Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization
2015, 5(1): 47-57. doi: 10.3934/naco.2015.5.47

Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system

1. 

Department of Mathematics, Shanghai University, Shanghai 200444, China, China

Received  December 2014 Revised  March 2015 Published  March 2015

This article is intended to provide the optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Based on the temperature distribution characteristics of snow and sea ice, we construct a piecewise smooth thermodynamic system coupled by snow and sea ice. Taking the piecewise thermal conductivities of snow and sea ice as control variables and the temperature deviations obtained from the system and the observations as the performance criterion, an identification model with state constraints is given. The dependency relationship between state and control variables is proven, and the existence of the optimal control is discussed. The work can provide a theoretical foundation for simulating temperature distributions of snow and sea ice.
Citation: Wei Lv, Ruirui Sui. Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 47-57. doi: 10.3934/naco.2015.5.47
References:
[1]

N. Calonne, F. Flin, S. Morin, B. Lesaffre, S. du Roscoat, C. Geindreau, F. St Martin dHeres, F. Grenoble and I. Grenoble, Numerical and experimental investigations of the effective thermal conductivity of snow, J. Geophys. Res., 38 (2010), L23501. doi: 10.1029/2011GL049234.

[2]

C. I. Christov and T. Marinov, Identification of heat-conduction coefficient via method of variational imbedding, Math. Comput. Modell., 27 (1998), 109-116. doi: 10.1016/S0895-7177(97)00269-0.

[3]

S. Dutman and J. Ha, Identifiability of piecewise constant conductivity in a heat conduction process, SIAM J.Control.Optim., 46 (2007), 694-713. doi: 10.1137/060657364.

[4]

H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Probl., 16 (2000), 1907-1923. doi: 10.1088/0266-5611/16/6/319.

[5]

L. C Evans, Partial differential equations, 2nd edition, Graduate studies in mathemastic 19. Province, RI: American Mathemastic Society, 2010, 350-358.

[6]

H. Fang, J. Wang, E. Feng and Z. Li, Parameter identification and application of a distributed parameter coupled system with a movable inner boundary, Computers and Mathematics with Applications, 62 (2011), 4015-4020. doi: 10.1016/j.camwa.2011.09.035.

[7]

T. Fichefet, B. Tartinville and H. Goosse, Sensitivity of the Antarctic sea ice to the thermal conductivity of snow, Geophys. Res. Lett., 27 (2000), 401-404.

[8]

S. Gutman, Identification of discontinuous parameter in flow equation, SIAM J.Control Optim., 28 (1990), 1049-1060. doi: 10.1137/0328057.

[9]

S. Larrsson and V. Themée, Partial differential equations with numerical methods, Springer-Verlag, New York, 1971.

[10]

RO. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonnet, P. Mathiot, S. Morin and P. Y. Barriat, On the formulation of snow thermal conductivity in large-scale sea ice models, J. Adv. Model. Earth Syst., 5 (2013). doi: 10.1002/jame.20039.

[11]

R. Lei, Z. Li, B. Cheng, Z. Zhang and P. Heil, Annual cycle of landfast sea ice in Prydz Bay, east Antarctica, Geophys. Res. Lett., 115 (2010), C02006. doi: 10.1029/2008JC005223.

[12]

P. Lemke, W. Owens and W. D. Hibler III, A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea, J. Geophys. Res., 95 (1990), 9513-9525.

[13]

W. Lv, E. Feng and Z. Li, A coupled thermodynamic system of sea ice and its parameter identification, Appl. Math. Model., 32 (2008), 1198-1207. doi: 10.1016/j.apm.2007.03.006.

[14]

W. Lv, E. Feng and Z. Li, Properties and optimality conditions of a three-dimension non-smooth thermodynamic system of sea ice, Appl. Math. Model., 33 (2009), 2324-2333. doi: 10.1016/j.apm.2008.07.002.

[15]

G. A. Maykut and W. M. Washington, Some results from a time-dependent thermodynamic model of sea ice, J. Geophys. Res., 276 (1971), 1550-1575.

[16]

M. J. McGuinness, K. Collins, H. J. Trodahl and T. G. Haskell, Nonlinear thermal transport and brine convection in first year sea ice, Ann. Glaciol., 72 (1998), 471-476.

[17]

S. Omatu and J. H. Seinfeld, Distributed parameter system, Cla.Press, 274 (1989), Oxford.

[18]

C. L. Parkinson and W. M. Washington, A large-scale numerical model of sea ice, J. Geophys. Res., 84 (1979), 311-337.

[19]

D. J. Pringle, H. Eicken, H. J. Trodahl and L. G. E. Backstrom, Thermal conductivity of landfast Antarctic and Arctic sea ice, J. Geophys. Res., 112 (2007), C04017. doi: 10.1029/2006JC003641.

[20]

M. C. Serreze, M. M. Holland and J. Stroeve, Perspectives on the Arctic's shrinking sea-ice cover, Science, 315 (2007), 1533-1536.

[21]

H. J. Trodahl, S. Wilkinson, M. McGuinness and T. Haskell, Thermal conductivity of sea ice: Dependence on temperature and depth, Geophys. Res. Lett., 28 (2001), 1279-1282.

[22]

X. Wu, I. Simmonds and W. Budd, Modeling of Antarctic sea ice in a general circulation model, J. Clim., 10 (1997), 593-609.

[23]

C. Y. Yang, Estimation of the temperature-dependent thermal conductivity in inverse heat condition problems, Appl. Math. Modell., 23 (1999), 469-478.

show all references

References:
[1]

N. Calonne, F. Flin, S. Morin, B. Lesaffre, S. du Roscoat, C. Geindreau, F. St Martin dHeres, F. Grenoble and I. Grenoble, Numerical and experimental investigations of the effective thermal conductivity of snow, J. Geophys. Res., 38 (2010), L23501. doi: 10.1029/2011GL049234.

[2]

C. I. Christov and T. Marinov, Identification of heat-conduction coefficient via method of variational imbedding, Math. Comput. Modell., 27 (1998), 109-116. doi: 10.1016/S0895-7177(97)00269-0.

[3]

S. Dutman and J. Ha, Identifiability of piecewise constant conductivity in a heat conduction process, SIAM J.Control.Optim., 46 (2007), 694-713. doi: 10.1137/060657364.

[4]

H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Probl., 16 (2000), 1907-1923. doi: 10.1088/0266-5611/16/6/319.

[5]

L. C Evans, Partial differential equations, 2nd edition, Graduate studies in mathemastic 19. Province, RI: American Mathemastic Society, 2010, 350-358.

[6]

H. Fang, J. Wang, E. Feng and Z. Li, Parameter identification and application of a distributed parameter coupled system with a movable inner boundary, Computers and Mathematics with Applications, 62 (2011), 4015-4020. doi: 10.1016/j.camwa.2011.09.035.

[7]

T. Fichefet, B. Tartinville and H. Goosse, Sensitivity of the Antarctic sea ice to the thermal conductivity of snow, Geophys. Res. Lett., 27 (2000), 401-404.

[8]

S. Gutman, Identification of discontinuous parameter in flow equation, SIAM J.Control Optim., 28 (1990), 1049-1060. doi: 10.1137/0328057.

[9]

S. Larrsson and V. Themée, Partial differential equations with numerical methods, Springer-Verlag, New York, 1971.

[10]

RO. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonnet, P. Mathiot, S. Morin and P. Y. Barriat, On the formulation of snow thermal conductivity in large-scale sea ice models, J. Adv. Model. Earth Syst., 5 (2013). doi: 10.1002/jame.20039.

[11]

R. Lei, Z. Li, B. Cheng, Z. Zhang and P. Heil, Annual cycle of landfast sea ice in Prydz Bay, east Antarctica, Geophys. Res. Lett., 115 (2010), C02006. doi: 10.1029/2008JC005223.

[12]

P. Lemke, W. Owens and W. D. Hibler III, A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea, J. Geophys. Res., 95 (1990), 9513-9525.

[13]

W. Lv, E. Feng and Z. Li, A coupled thermodynamic system of sea ice and its parameter identification, Appl. Math. Model., 32 (2008), 1198-1207. doi: 10.1016/j.apm.2007.03.006.

[14]

W. Lv, E. Feng and Z. Li, Properties and optimality conditions of a three-dimension non-smooth thermodynamic system of sea ice, Appl. Math. Model., 33 (2009), 2324-2333. doi: 10.1016/j.apm.2008.07.002.

[15]

G. A. Maykut and W. M. Washington, Some results from a time-dependent thermodynamic model of sea ice, J. Geophys. Res., 276 (1971), 1550-1575.

[16]

M. J. McGuinness, K. Collins, H. J. Trodahl and T. G. Haskell, Nonlinear thermal transport and brine convection in first year sea ice, Ann. Glaciol., 72 (1998), 471-476.

[17]

S. Omatu and J. H. Seinfeld, Distributed parameter system, Cla.Press, 274 (1989), Oxford.

[18]

C. L. Parkinson and W. M. Washington, A large-scale numerical model of sea ice, J. Geophys. Res., 84 (1979), 311-337.

[19]

D. J. Pringle, H. Eicken, H. J. Trodahl and L. G. E. Backstrom, Thermal conductivity of landfast Antarctic and Arctic sea ice, J. Geophys. Res., 112 (2007), C04017. doi: 10.1029/2006JC003641.

[20]

M. C. Serreze, M. M. Holland and J. Stroeve, Perspectives on the Arctic's shrinking sea-ice cover, Science, 315 (2007), 1533-1536.

[21]

H. J. Trodahl, S. Wilkinson, M. McGuinness and T. Haskell, Thermal conductivity of sea ice: Dependence on temperature and depth, Geophys. Res. Lett., 28 (2001), 1279-1282.

[22]

X. Wu, I. Simmonds and W. Budd, Modeling of Antarctic sea ice in a general circulation model, J. Clim., 10 (1997), 593-609.

[23]

C. Y. Yang, Estimation of the temperature-dependent thermal conductivity in inverse heat condition problems, Appl. Math. Modell., 23 (1999), 469-478.

[1]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems and Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[2]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial and Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[3]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure and Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[4]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[5]

Xiaoping Fang, Youjun Deng. Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement. Inverse Problems and Imaging, 2018, 12 (3) : 733-743. doi: 10.3934/ipi.2018031

[6]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[7]

Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001

[8]

Adriana C. Briozzo, María F. Natale, Domingo A. Tarzia. The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1209-1220. doi: 10.3934/cpaa.2010.9.1209

[9]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[10]

Kari Eloranta. Archimedean ice. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4291-4303. doi: 10.3934/dcds.2013.33.4291

[11]

Masahiro Yamaguchi, Yasuhiro Takeuchi, Wanbiao Ma. Population dynamics of sea bass and young sea bass. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 833-840. doi: 10.3934/dcdsb.2004.4.833

[12]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[13]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control and Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control and Related Fields, 2021, 11 (4) : 739-769. doi: 10.3934/mcrf.2020045

[15]

Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021264

[16]

Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049

[17]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[18]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[19]

Marius Paicu, Ning Zhu. On the Yudovich's type solutions for the 2D Boussinesq system with thermal diffusivity. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5711-5728. doi: 10.3934/dcds.2020242

[20]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

 Impact Factor: 

Metrics

  • PDF downloads (146)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]