• Previous Article
    Optimal dilution strategy for a microbial continuous culture based on the biological robustness
  • NACO Home
  • This Issue
  • Next Article
    Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization
2015, 5(1): 47-57. doi: 10.3934/naco.2015.5.47

Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system

1. 

Department of Mathematics, Shanghai University, Shanghai 200444, China, China

Received  December 2014 Revised  March 2015 Published  March 2015

This article is intended to provide the optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Based on the temperature distribution characteristics of snow and sea ice, we construct a piecewise smooth thermodynamic system coupled by snow and sea ice. Taking the piecewise thermal conductivities of snow and sea ice as control variables and the temperature deviations obtained from the system and the observations as the performance criterion, an identification model with state constraints is given. The dependency relationship between state and control variables is proven, and the existence of the optimal control is discussed. The work can provide a theoretical foundation for simulating temperature distributions of snow and sea ice.
Citation: Wei Lv, Ruirui Sui. Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 47-57. doi: 10.3934/naco.2015.5.47
References:
[1]

N. Calonne, F. Flin, S. Morin, B. Lesaffre, S. du Roscoat, C. Geindreau, F. St Martin dHeres, F. Grenoble and I. Grenoble, Numerical and experimental investigations of the effective thermal conductivity of snow,, J. Geophys. Res., 38 (2010).  doi: 10.1029/2011GL049234.  Google Scholar

[2]

C. I. Christov and T. Marinov, Identification of heat-conduction coefficient via method of variational imbedding,, Math. Comput. Modell., 27 (1998), 109.  doi: 10.1016/S0895-7177(97)00269-0.  Google Scholar

[3]

S. Dutman and J. Ha, Identifiability of piecewise constant conductivity in a heat conduction process,, SIAM J.Control.Optim., 46 (2007), 694.  doi: 10.1137/060657364.  Google Scholar

[4]

H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction,, Inverse Probl., 16 (2000), 1907.  doi: 10.1088/0266-5611/16/6/319.  Google Scholar

[5]

L. C Evans, Partial differential equations,, 2nd edition, (2010), 350.   Google Scholar

[6]

H. Fang, J. Wang, E. Feng and Z. Li, Parameter identification and application of a distributed parameter coupled system with a movable inner boundary,, Computers and Mathematics with Applications, 62 (2011), 4015.  doi: 10.1016/j.camwa.2011.09.035.  Google Scholar

[7]

T. Fichefet, B. Tartinville and H. Goosse, Sensitivity of the Antarctic sea ice to the thermal conductivity of snow,, Geophys. Res. Lett., 27 (2000), 401.   Google Scholar

[8]

S. Gutman, Identification of discontinuous parameter in flow equation,, SIAM J.Control Optim., 28 (1990), 1049.  doi: 10.1137/0328057.  Google Scholar

[9]

S. Larrsson and V. Themée, Partial differential equations with numerical methods,, Springer-Verlag, (1971).   Google Scholar

[10]

RO. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonnet, P. Mathiot, S. Morin and P. Y. Barriat, On the formulation of snow thermal conductivity in large-scale sea ice models,, J. Adv. Model. Earth Syst., 5 (2013).  doi: 10.1002/jame.20039.  Google Scholar

[11]

R. Lei, Z. Li, B. Cheng, Z. Zhang and P. Heil, Annual cycle of landfast sea ice in Prydz Bay, east Antarctica,, Geophys. Res. Lett., 115 (2010).  doi: 10.1029/2008JC005223.  Google Scholar

[12]

P. Lemke, W. Owens and W. D. Hibler III, A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea,, J. Geophys. Res., 95 (1990), 9513.   Google Scholar

[13]

W. Lv, E. Feng and Z. Li, A coupled thermodynamic system of sea ice and its parameter identification,, Appl. Math. Model., 32 (2008), 1198.  doi: 10.1016/j.apm.2007.03.006.  Google Scholar

[14]

W. Lv, E. Feng and Z. Li, Properties and optimality conditions of a three-dimension non-smooth thermodynamic system of sea ice,, Appl. Math. Model., 33 (2009), 2324.  doi: 10.1016/j.apm.2008.07.002.  Google Scholar

[15]

G. A. Maykut and W. M. Washington, Some results from a time-dependent thermodynamic model of sea ice,, J. Geophys. Res., 276 (1971), 1550.   Google Scholar

[16]

M. J. McGuinness, K. Collins, H. J. Trodahl and T. G. Haskell, Nonlinear thermal transport and brine convection in first year sea ice,, Ann. Glaciol., 72 (1998), 471.   Google Scholar

[17]

S. Omatu and J. H. Seinfeld, Distributed parameter system,, Cla.Press, 274 (1989).   Google Scholar

[18]

C. L. Parkinson and W. M. Washington, A large-scale numerical model of sea ice,, J. Geophys. Res., 84 (1979), 311.   Google Scholar

[19]

D. J. Pringle, H. Eicken, H. J. Trodahl and L. G. E. Backstrom, Thermal conductivity of landfast Antarctic and Arctic sea ice,, J. Geophys. Res., 112 (2007).  doi: 10.1029/2006JC003641.  Google Scholar

[20]

M. C. Serreze, M. M. Holland and J. Stroeve, Perspectives on the Arctic's shrinking sea-ice cover,, Science, 315 (2007), 1533.   Google Scholar

[21]

H. J. Trodahl, S. Wilkinson, M. McGuinness and T. Haskell, Thermal conductivity of sea ice: Dependence on temperature and depth,, Geophys. Res. Lett., 28 (2001), 1279.   Google Scholar

[22]

X. Wu, I. Simmonds and W. Budd, Modeling of Antarctic sea ice in a general circulation model,, J. Clim., 10 (1997), 593.   Google Scholar

[23]

C. Y. Yang, Estimation of the temperature-dependent thermal conductivity in inverse heat condition problems,, Appl. Math. Modell., 23 (1999), 469.   Google Scholar

show all references

References:
[1]

N. Calonne, F. Flin, S. Morin, B. Lesaffre, S. du Roscoat, C. Geindreau, F. St Martin dHeres, F. Grenoble and I. Grenoble, Numerical and experimental investigations of the effective thermal conductivity of snow,, J. Geophys. Res., 38 (2010).  doi: 10.1029/2011GL049234.  Google Scholar

[2]

C. I. Christov and T. Marinov, Identification of heat-conduction coefficient via method of variational imbedding,, Math. Comput. Modell., 27 (1998), 109.  doi: 10.1016/S0895-7177(97)00269-0.  Google Scholar

[3]

S. Dutman and J. Ha, Identifiability of piecewise constant conductivity in a heat conduction process,, SIAM J.Control.Optim., 46 (2007), 694.  doi: 10.1137/060657364.  Google Scholar

[4]

H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction,, Inverse Probl., 16 (2000), 1907.  doi: 10.1088/0266-5611/16/6/319.  Google Scholar

[5]

L. C Evans, Partial differential equations,, 2nd edition, (2010), 350.   Google Scholar

[6]

H. Fang, J. Wang, E. Feng and Z. Li, Parameter identification and application of a distributed parameter coupled system with a movable inner boundary,, Computers and Mathematics with Applications, 62 (2011), 4015.  doi: 10.1016/j.camwa.2011.09.035.  Google Scholar

[7]

T. Fichefet, B. Tartinville and H. Goosse, Sensitivity of the Antarctic sea ice to the thermal conductivity of snow,, Geophys. Res. Lett., 27 (2000), 401.   Google Scholar

[8]

S. Gutman, Identification of discontinuous parameter in flow equation,, SIAM J.Control Optim., 28 (1990), 1049.  doi: 10.1137/0328057.  Google Scholar

[9]

S. Larrsson and V. Themée, Partial differential equations with numerical methods,, Springer-Verlag, (1971).   Google Scholar

[10]

RO. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonnet, P. Mathiot, S. Morin and P. Y. Barriat, On the formulation of snow thermal conductivity in large-scale sea ice models,, J. Adv. Model. Earth Syst., 5 (2013).  doi: 10.1002/jame.20039.  Google Scholar

[11]

R. Lei, Z. Li, B. Cheng, Z. Zhang and P. Heil, Annual cycle of landfast sea ice in Prydz Bay, east Antarctica,, Geophys. Res. Lett., 115 (2010).  doi: 10.1029/2008JC005223.  Google Scholar

[12]

P. Lemke, W. Owens and W. D. Hibler III, A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea,, J. Geophys. Res., 95 (1990), 9513.   Google Scholar

[13]

W. Lv, E. Feng and Z. Li, A coupled thermodynamic system of sea ice and its parameter identification,, Appl. Math. Model., 32 (2008), 1198.  doi: 10.1016/j.apm.2007.03.006.  Google Scholar

[14]

W. Lv, E. Feng and Z. Li, Properties and optimality conditions of a three-dimension non-smooth thermodynamic system of sea ice,, Appl. Math. Model., 33 (2009), 2324.  doi: 10.1016/j.apm.2008.07.002.  Google Scholar

[15]

G. A. Maykut and W. M. Washington, Some results from a time-dependent thermodynamic model of sea ice,, J. Geophys. Res., 276 (1971), 1550.   Google Scholar

[16]

M. J. McGuinness, K. Collins, H. J. Trodahl and T. G. Haskell, Nonlinear thermal transport and brine convection in first year sea ice,, Ann. Glaciol., 72 (1998), 471.   Google Scholar

[17]

S. Omatu and J. H. Seinfeld, Distributed parameter system,, Cla.Press, 274 (1989).   Google Scholar

[18]

C. L. Parkinson and W. M. Washington, A large-scale numerical model of sea ice,, J. Geophys. Res., 84 (1979), 311.   Google Scholar

[19]

D. J. Pringle, H. Eicken, H. J. Trodahl and L. G. E. Backstrom, Thermal conductivity of landfast Antarctic and Arctic sea ice,, J. Geophys. Res., 112 (2007).  doi: 10.1029/2006JC003641.  Google Scholar

[20]

M. C. Serreze, M. M. Holland and J. Stroeve, Perspectives on the Arctic's shrinking sea-ice cover,, Science, 315 (2007), 1533.   Google Scholar

[21]

H. J. Trodahl, S. Wilkinson, M. McGuinness and T. Haskell, Thermal conductivity of sea ice: Dependence on temperature and depth,, Geophys. Res. Lett., 28 (2001), 1279.   Google Scholar

[22]

X. Wu, I. Simmonds and W. Budd, Modeling of Antarctic sea ice in a general circulation model,, J. Clim., 10 (1997), 593.   Google Scholar

[23]

C. Y. Yang, Estimation of the temperature-dependent thermal conductivity in inverse heat condition problems,, Appl. Math. Modell., 23 (1999), 469.   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[17]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]