Citation: |
[1] |
R. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources, in Proceedings of the 2001 Congress on Evolutionary Computation, 1 (2001), 81-86. |
[2] |
C. Karakuzu, Fuzzy controller training using particle swarm optimization for nonlinear system control, ISA transactions, 47 (2008), 229-239. |
[3] |
J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, 4 (1995), 1942-1948. |
[4] |
H. Kitano, Biological robustness, Nature Reviews Genetics, 5 (2004), 826-837. |
[5] |
H. Kitano, Towards a theory of biological robustness, Molecular systems biology, 3 (2007), Article 137. |
[6] |
B. I. Koh, A. D. George, R. T. Haftka and B. J. Fregly, Parallel asynchronous particle swarm optimization, International Journal for Numerical Methods in Engineering, 67 (2006), 578-595. |
[7] |
L. A. Laffend, V. Nagarajan and C. E. Nakamura, Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism, 1997, US Patent 5,686,276. |
[8] |
X. Li, E. Feng and Z. Xiu, Stability and optimal control of microorganisms in continuous culture, Journal of Applied Mathematics and Computing, 22 (2006), 425-434.doi: 10.1007/BF02896490. |
[9] |
H. Lian, E. Feng, X. Li, J. Ye and Z. Xiu, Oscillatory behavior in microbial continuous culture with discrete time delay, Nonlinear Analysis: Real World Applications, 10 (2009), 2749-2757.doi: 10.1016/j.nonrwa.2008.08.014. |
[10] |
C. Liu, Z. Gong, E. Feng and H. Yin, Optimal switching control of a fed-batch fermentation process, Journal of Global Optimization, 52 (2012), 265-280.doi: 10.1007/s10898-011-9663-8. |
[11] |
C. Liu, Z. Gong, B. Shen and E. Feng, Modelling and optimal control for a fed-batch fermentation process, Applied Mathematical Modelling, 37 (2013), 695-706.doi: 10.1016/j.apm.2012.02.044. |
[12] |
L. Liu, W. Liu and D. A. Cartes, Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors, Engineering Applications of Artificial Intelligence, 21 (2008), 1092-1100. |
[13] |
Y. Ma, Z. Xiu, L. Sun and E. Feng, Hopf bifurcation and chaos analysis of a microbial continuous culture model with time delay, International Journal of Nonlinear Sciences and Numerical Simulation, 7 (2006), 305-308. |
[14] |
C. E. Nakamura and G. M. Whited, Metabolic engineering for the microbial production of 1,3-propanediol, Current opinion in biotechnology, 14 (2003), 454-459. |
[15] |
B. Shen, C. Liu, J. Ye, E. Feng and Z. Xiu, Parameter identification and optimization algorithm in microbial continuous culture, Applied Mathematical Modelling, 36 (2012), 585-595.doi: 10.1016/j.apm.2011.07.031. |
[16] |
Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu and A. P. Zeng, Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane, Biochemical Engineering Journal, 38 (2008), 22-32. |
[17] |
J. Wang, Q. Sun and E. Feng, Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol, Communications in Nonlinear Science and Numerical Simulation, 11 (2012), 4446-4454.doi: 10.1016/j.cnsns.2012.03.031. |
[18] |
J. Wang, J. Ye, E. Feng, H. Yin and B. Tan, Complex metabolic network of glycerol fermentation by Klebsiella pneumoniae and its system identification via biological robustness, Nonlinear Analysis: Hybrid Systems, 5 (2011), 102-112.doi: 10.1016/j.nahs.2010.10.002. |
[19] |
L. Wang, E. Feng, J. Ye and Z. Xiu, Modeling and properties of nonlinear stochastic dynamical system of continuous culture, Complex Sciences, 4 (2009), 458-466. |
[20] |
L. Wang, Z. Xiu, Z. Gong and E. Feng, Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture, International Journal of Biomathematics, 5 (2012), 177-188.doi: 10.1142/S179352451100174X. |
[21] |
S. Wang and E. Feng, Stability of nonlinear microbial bioconversion system concerning glycerol's active transport and 1,3-pd's passive transport, Nonlinear Analysis: Real World Applications, 11 (2010), 3501-3511.doi: 10.1016/j.nonrwa.2009.12.011. |
[22] |
Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol, Journal of Dalian University of Technology, 40 (2000), 428-433. |
[23] |
J. Ye, E. Feng, H. Lian and Z. Xiu, Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures, Applied Mathematics and Computation, 207 (2009), 307-318.doi: 10.1016/j.amc.2008.10.046. |
[24] |
J. Ye, E. Feng, H. Yin and Z. Xiu, Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and ph logic control, Nonlinear Analysis: Real World Applications, 12 (2011), 364-376.doi: 10.1016/j.nonrwa.2010.06.022. |
[25] |
J. Ye, Y. Zhang, E. Feng, Z. Xiu and H. Yin, Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control, Applied Mathematical Modelling, 36 (2012), 357-369.doi: 10.1016/j.apm.2011.05.059. |
[26] |
A. P. Zeng, A. Ross, H. Biebl, C. Tag, B.Günzel and W. D. Deckwer, Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation, Biotechnology and bioengineering, 44 (1994), 902-911. |
[27] |
A. P. Zeng and H. Biebl, Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends, Tools and Applications of Biochemical Engineering Science, 74 (2002), 239-259. |
[28] |
J. Zhai, J. Ye, L. Wang, E. Feng, H. Yin and Z. Xiu, Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture, Nonlinear Analysis: Real World Applications, 12 (2011), 2730-2741.doi: 10.1016/j.nonrwa.2011.03.018. |
[29] |
Y. Zhang, E. Feng and Z. Xiu, Robust analysis of hybrid dynamical systems for 1,3-propanediol transport mechanisms in microbial continuous fermentation, Mathematical and Computer Modelling, 54 (2011), 3164-3171.doi: 10.1016/j.mcm.2011.08.010. |