• Previous Article
    Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times
  • NACO Home
  • This Issue
  • Next Article
    Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system
2015, 5(1): 59-69. doi: 10.3934/naco.2015.5.59

Optimal dilution strategy for a microbial continuous culture based on the biological robustness

1. 

School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, China, China

2. 

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, Fujian 350108, China

Received  January 2015 Revised  March 2015 Published  March 2015

A robust optimal parameter selection model is proposed to formulate the microbial continuous culture process of glycerol bio-dissimilation to 1,3-propanediol (1,3-PD), in which the dilution rate and the glycerol concentration in feed medium are taken as the optimization variables. In consideration of the uncertain factors that some system parameters may be changed with the change of the optimization variables, we establish a novelty mathematical model which is represented by an eight-dimensional nonlinear dynamical system with the unknown parameters. On the basis of biological robustness, we give a quantitative definition of robustness index. The concentration of 1,3-PD at the approximately steady-state time together with the robustness index are taken as the cost functional in consideration of uncertain metabolic mechanisms. A parallel particle swarm optimization -- optimal parameter selection algorithm (PPSO-OPSA) is constructed to find the optimal dilution rate and the feeding glycerol concentration. Numerical results show that, by employing the obtained optimal input strategy, not only the concentration of 1,3-PD at the approximately steady-state time can be increased considerably compared with the previous experimental results, but also the obtained optimal parameters are robust for the dynamical system.
Citation: Jingang Zhai, Guangmao Jiang, Jianxiong Ye. Optimal dilution strategy for a microbial continuous culture based on the biological robustness. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 59-69. doi: 10.3934/naco.2015.5.59
References:
[1]

R. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources,, in Proceedings of the 2001 Congress on Evolutionary Computation, 1 (2001), 81.   Google Scholar

[2]

C. Karakuzu, Fuzzy controller training using particle swarm optimization for nonlinear system control,, ISA transactions, 47 (2008), 229.   Google Scholar

[3]

J. Kennedy and R. Eberhart, Particle swarm optimization,, in Proceedings of IEEE International Conference on Neural Networks, 4 (1995), 1942.   Google Scholar

[4]

H. Kitano, Biological robustness,, Nature Reviews Genetics, 5 (2004), 826.   Google Scholar

[5]

H. Kitano, Towards a theory of biological robustness,, Molecular systems biology, 3 (2007).   Google Scholar

[6]

B. I. Koh, A. D. George, R. T. Haftka and B. J. Fregly, Parallel asynchronous particle swarm optimization,, International Journal for Numerical Methods in Engineering, 67 (2006), 578.   Google Scholar

[7]

L. A. Laffend, V. Nagarajan and C. E. Nakamura, Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism,, 1997, ().   Google Scholar

[8]

X. Li, E. Feng and Z. Xiu, Stability and optimal control of microorganisms in continuous culture,, Journal of Applied Mathematics and Computing, 22 (2006), 425.  doi: 10.1007/BF02896490.  Google Scholar

[9]

H. Lian, E. Feng, X. Li, J. Ye and Z. Xiu, Oscillatory behavior in microbial continuous culture with discrete time delay,, Nonlinear Analysis: Real World Applications, 10 (2009), 2749.  doi: 10.1016/j.nonrwa.2008.08.014.  Google Scholar

[10]

C. Liu, Z. Gong, E. Feng and H. Yin, Optimal switching control of a fed-batch fermentation process,, Journal of Global Optimization, 52 (2012), 265.  doi: 10.1007/s10898-011-9663-8.  Google Scholar

[11]

C. Liu, Z. Gong, B. Shen and E. Feng, Modelling and optimal control for a fed-batch fermentation process,, Applied Mathematical Modelling, 37 (2013), 695.  doi: 10.1016/j.apm.2012.02.044.  Google Scholar

[12]

L. Liu, W. Liu and D. A. Cartes, Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors,, Engineering Applications of Artificial Intelligence, 21 (2008), 1092.   Google Scholar

[13]

Y. Ma, Z. Xiu, L. Sun and E. Feng, Hopf bifurcation and chaos analysis of a microbial continuous culture model with time delay,, International Journal of Nonlinear Sciences and Numerical Simulation, 7 (2006), 305.   Google Scholar

[14]

C. E. Nakamura and G. M. Whited, Metabolic engineering for the microbial production of 1,3-propanediol,, Current opinion in biotechnology, 14 (2003), 454.   Google Scholar

[15]

B. Shen, C. Liu, J. Ye, E. Feng and Z. Xiu, Parameter identification and optimization algorithm in microbial continuous culture,, Applied Mathematical Modelling, 36 (2012), 585.  doi: 10.1016/j.apm.2011.07.031.  Google Scholar

[16]

Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu and A. P. Zeng, Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane,, Biochemical Engineering Journal, 38 (2008), 22.   Google Scholar

[17]

J. Wang, Q. Sun and E. Feng, Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol,, Communications in Nonlinear Science and Numerical Simulation, 11 (2012), 4446.  doi: 10.1016/j.cnsns.2012.03.031.  Google Scholar

[18]

J. Wang, J. Ye, E. Feng, H. Yin and B. Tan, Complex metabolic network of glycerol fermentation by Klebsiella pneumoniae and its system identification via biological robustness,, Nonlinear Analysis: Hybrid Systems, 5 (2011), 102.  doi: 10.1016/j.nahs.2010.10.002.  Google Scholar

[19]

L. Wang, E. Feng, J. Ye and Z. Xiu, Modeling and properties of nonlinear stochastic dynamical system of continuous culture,, Complex Sciences, 4 (2009), 458.   Google Scholar

[20]

L. Wang, Z. Xiu, Z. Gong and E. Feng, Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture,, International Journal of Biomathematics, 5 (2012), 177.  doi: 10.1142/S179352451100174X.  Google Scholar

[21]

S. Wang and E. Feng, Stability of nonlinear microbial bioconversion system concerning glycerol's active transport and 1,3-pd's passive transport,, Nonlinear Analysis: Real World Applications, 11 (2010), 3501.  doi: 10.1016/j.nonrwa.2009.12.011.  Google Scholar

[22]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, Journal of Dalian University of Technology, 40 (2000), 428.   Google Scholar

[23]

J. Ye, E. Feng, H. Lian and Z. Xiu, Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures,, Applied Mathematics and Computation, 207 (2009), 307.  doi: 10.1016/j.amc.2008.10.046.  Google Scholar

[24]

J. Ye, E. Feng, H. Yin and Z. Xiu, Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and ph logic control,, Nonlinear Analysis: Real World Applications, 12 (2011), 364.  doi: 10.1016/j.nonrwa.2010.06.022.  Google Scholar

[25]

J. Ye, Y. Zhang, E. Feng, Z. Xiu and H. Yin, Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control,, Applied Mathematical Modelling, 36 (2012), 357.  doi: 10.1016/j.apm.2011.05.059.  Google Scholar

[26]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B.Günzel and W. D. Deckwer, Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation,, Biotechnology and bioengineering, 44 (1994), 902.   Google Scholar

[27]

A. P. Zeng and H. Biebl, Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends,, Tools and Applications of Biochemical Engineering Science, 74 (2002), 239.   Google Scholar

[28]

J. Zhai, J. Ye, L. Wang, E. Feng, H. Yin and Z. Xiu, Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture,, Nonlinear Analysis: Real World Applications, 12 (2011), 2730.  doi: 10.1016/j.nonrwa.2011.03.018.  Google Scholar

[29]

Y. Zhang, E. Feng and Z. Xiu, Robust analysis of hybrid dynamical systems for 1,3-propanediol transport mechanisms in microbial continuous fermentation,, Mathematical and Computer Modelling, 54 (2011), 3164.  doi: 10.1016/j.mcm.2011.08.010.  Google Scholar

show all references

References:
[1]

R. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources,, in Proceedings of the 2001 Congress on Evolutionary Computation, 1 (2001), 81.   Google Scholar

[2]

C. Karakuzu, Fuzzy controller training using particle swarm optimization for nonlinear system control,, ISA transactions, 47 (2008), 229.   Google Scholar

[3]

J. Kennedy and R. Eberhart, Particle swarm optimization,, in Proceedings of IEEE International Conference on Neural Networks, 4 (1995), 1942.   Google Scholar

[4]

H. Kitano, Biological robustness,, Nature Reviews Genetics, 5 (2004), 826.   Google Scholar

[5]

H. Kitano, Towards a theory of biological robustness,, Molecular systems biology, 3 (2007).   Google Scholar

[6]

B. I. Koh, A. D. George, R. T. Haftka and B. J. Fregly, Parallel asynchronous particle swarm optimization,, International Journal for Numerical Methods in Engineering, 67 (2006), 578.   Google Scholar

[7]

L. A. Laffend, V. Nagarajan and C. E. Nakamura, Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism,, 1997, ().   Google Scholar

[8]

X. Li, E. Feng and Z. Xiu, Stability and optimal control of microorganisms in continuous culture,, Journal of Applied Mathematics and Computing, 22 (2006), 425.  doi: 10.1007/BF02896490.  Google Scholar

[9]

H. Lian, E. Feng, X. Li, J. Ye and Z. Xiu, Oscillatory behavior in microbial continuous culture with discrete time delay,, Nonlinear Analysis: Real World Applications, 10 (2009), 2749.  doi: 10.1016/j.nonrwa.2008.08.014.  Google Scholar

[10]

C. Liu, Z. Gong, E. Feng and H. Yin, Optimal switching control of a fed-batch fermentation process,, Journal of Global Optimization, 52 (2012), 265.  doi: 10.1007/s10898-011-9663-8.  Google Scholar

[11]

C. Liu, Z. Gong, B. Shen and E. Feng, Modelling and optimal control for a fed-batch fermentation process,, Applied Mathematical Modelling, 37 (2013), 695.  doi: 10.1016/j.apm.2012.02.044.  Google Scholar

[12]

L. Liu, W. Liu and D. A. Cartes, Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors,, Engineering Applications of Artificial Intelligence, 21 (2008), 1092.   Google Scholar

[13]

Y. Ma, Z. Xiu, L. Sun and E. Feng, Hopf bifurcation and chaos analysis of a microbial continuous culture model with time delay,, International Journal of Nonlinear Sciences and Numerical Simulation, 7 (2006), 305.   Google Scholar

[14]

C. E. Nakamura and G. M. Whited, Metabolic engineering for the microbial production of 1,3-propanediol,, Current opinion in biotechnology, 14 (2003), 454.   Google Scholar

[15]

B. Shen, C. Liu, J. Ye, E. Feng and Z. Xiu, Parameter identification and optimization algorithm in microbial continuous culture,, Applied Mathematical Modelling, 36 (2012), 585.  doi: 10.1016/j.apm.2011.07.031.  Google Scholar

[16]

Y. Q. Sun, W. T. Qi, H. Teng, Z. L. Xiu and A. P. Zeng, Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane,, Biochemical Engineering Journal, 38 (2008), 22.   Google Scholar

[17]

J. Wang, Q. Sun and E. Feng, Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol,, Communications in Nonlinear Science and Numerical Simulation, 11 (2012), 4446.  doi: 10.1016/j.cnsns.2012.03.031.  Google Scholar

[18]

J. Wang, J. Ye, E. Feng, H. Yin and B. Tan, Complex metabolic network of glycerol fermentation by Klebsiella pneumoniae and its system identification via biological robustness,, Nonlinear Analysis: Hybrid Systems, 5 (2011), 102.  doi: 10.1016/j.nahs.2010.10.002.  Google Scholar

[19]

L. Wang, E. Feng, J. Ye and Z. Xiu, Modeling and properties of nonlinear stochastic dynamical system of continuous culture,, Complex Sciences, 4 (2009), 458.   Google Scholar

[20]

L. Wang, Z. Xiu, Z. Gong and E. Feng, Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture,, International Journal of Biomathematics, 5 (2012), 177.  doi: 10.1142/S179352451100174X.  Google Scholar

[21]

S. Wang and E. Feng, Stability of nonlinear microbial bioconversion system concerning glycerol's active transport and 1,3-pd's passive transport,, Nonlinear Analysis: Real World Applications, 11 (2010), 3501.  doi: 10.1016/j.nonrwa.2009.12.011.  Google Scholar

[22]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, Journal of Dalian University of Technology, 40 (2000), 428.   Google Scholar

[23]

J. Ye, E. Feng, H. Lian and Z. Xiu, Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures,, Applied Mathematics and Computation, 207 (2009), 307.  doi: 10.1016/j.amc.2008.10.046.  Google Scholar

[24]

J. Ye, E. Feng, H. Yin and Z. Xiu, Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and ph logic control,, Nonlinear Analysis: Real World Applications, 12 (2011), 364.  doi: 10.1016/j.nonrwa.2010.06.022.  Google Scholar

[25]

J. Ye, Y. Zhang, E. Feng, Z. Xiu and H. Yin, Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control,, Applied Mathematical Modelling, 36 (2012), 357.  doi: 10.1016/j.apm.2011.05.059.  Google Scholar

[26]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B.Günzel and W. D. Deckwer, Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation,, Biotechnology and bioengineering, 44 (1994), 902.   Google Scholar

[27]

A. P. Zeng and H. Biebl, Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends,, Tools and Applications of Biochemical Engineering Science, 74 (2002), 239.   Google Scholar

[28]

J. Zhai, J. Ye, L. Wang, E. Feng, H. Yin and Z. Xiu, Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture,, Nonlinear Analysis: Real World Applications, 12 (2011), 2730.  doi: 10.1016/j.nonrwa.2011.03.018.  Google Scholar

[29]

Y. Zhang, E. Feng and Z. Xiu, Robust analysis of hybrid dynamical systems for 1,3-propanediol transport mechanisms in microbial continuous fermentation,, Mathematical and Computer Modelling, 54 (2011), 3164.  doi: 10.1016/j.mcm.2011.08.010.  Google Scholar

[1]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]