2016, 6(1): 1-20. doi: 10.3934/naco.2016.6.1

Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control

1. 

Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in Systems and Control Theory, Magdeburg, Germany, Germany, Germany

Received  November 2014 Revised  January 2016 Published  January 2016

Stabilizing a flow around an unstable equilibrium is a typical problem in flow control. Model-based designed of modern controllers like LQR/LQG or $H_\infty$ compensators is often limited by the large-scale of the discretized flow models. Therefore, model reduction is usually needed before designing such a controller. Here we suggest an approach based on applying balanced truncation for unstable systems to the linearized flow equations usually used for compensator design. For this purpose, we modify the ADI iteration for Lyapunov equations to deal with the index-2 structure of the underlying descriptor system efficiently in an implicit way. The resulting algorithm is tested for model reduction and control design of a linearized Navier-Stokes system describing von Kármán vortex shedding.
Citation: Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1
References:
[1]

M. I. Ahmad and P. Benner, Interpolatory model reduction techniques for linear second-order descriptor systems,, in Proc. European Control Conf. ECC 2014, (2014), 1075.   Google Scholar

[2]

L. Amodei and J.-M. Buchot, A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation,, Numer. Lin. Alg. Appl., 19 (2012), 700.  doi: 10.1002/nla.799.  Google Scholar

[3]

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems,, SIAM Publications, (2005).  doi: 10.1137/1.9780898718713.  Google Scholar

[4]

A. C. Antoulas, D. C. Sorensen and Y. Zhou, On the decay rate of Hankel singular values and related issues,, Systems Control Lett., 46 (2002), 323.  doi: 10.1016/S0167-6911(02)00147-0.  Google Scholar

[5]

U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations,, SIAM, (1998).  doi: 10.1137/1.9781611971392.  Google Scholar

[6]

E. Bänsch, P. Benner, J. Saak and H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows,, SIAM J. Sci. Comput., 37 (2015).  doi: 10.1137/140980016.  Google Scholar

[7]

S. Barrachina, P. Benner and E. S. Quintana-Ortí, Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function,, Numer. Algorithms, 46 (2007), 351.  doi: 10.1007/s11075-007-9143-x.  Google Scholar

[8]

P. Benner and T. Breiten, On optimality of approximate low rank solutions of large-scale matrix equations,, Systems Control Lett., 67 (2014), 55.  doi: 10.1016/j.sysconle.2014.02.005.  Google Scholar

[9]

P. Benner, P. Kürschner and J. Saak, Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method,, Numer. Algorithms, 62 (2013), 225.  doi: 10.1007/s11075-012-9569-7.  Google Scholar

[10]

P. Benner, P. Kürschner and J. Saak, An improved numerical method for balanced truncation for symmetric second order systems,, Math. Comput. Model. Dyn. Syst., 19 (2013), 593.  doi: 10.1080/13873954.2013.794363.  Google Scholar

[11]

P. Benner, P. Kürschner and J. Saak, Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations,, Electron. Trans. Numer. Anal., 43 (2014), 142.   Google Scholar

[12]

P. Benner, J. R. Li and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems,, Numer. Lin. Alg. Appl., 15 (2008), 755.  doi: 10.1002/nla.622.  Google Scholar

[13]

P. Benner, V. Mehrmann and D. C. Sorensen, Dimension Reduction of Large-Scale Systems, vol. 45 of Lect. Notes Comput. Sci. Eng.,, Springer-Verlag, (2005).  doi: 10.1007/3-540-27909-1.  Google Scholar

[14]

P. Benner and T. Stykel, Numerical solution of projected algebraic Riccati equations,, SIAM J. Numer. Anal, 52 (2014), 581.  doi: 10.1137/130923993.  Google Scholar

[15]

K. A. Cliffe, T. J. Garratt and A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics,, SIAM J. Matrix Anal. Appl., 15 (1994), 1310.  doi: 10.1137/S0895479892233230.  Google Scholar

[16]

B. N. Datta, Numerical Methods for Linear Control Systems,, Elsevier Academic Press, (2004).   Google Scholar

[17]

E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynamics,, European Consortium for Mathematics in Industry, (1998).  doi: 10.1007/978-3-663-09828-7.  Google Scholar

[18]

K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L norms,, Internat. J. Control, 39 (1984), 1115.  doi: 10.1080/00207178408933239.  Google Scholar

[19]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins University Press, (1983).   Google Scholar

[20]

L. Grasedyck and W. Hackbusch, A multigrid method to solve large scale Sylvester equations,, SIAM J. Matrix Anal. Appl., 29 (2007), 870.  doi: 10.1137/040618102.  Google Scholar

[21]

S. Gugercin, T. Stykel and S. Wyatt, Model reduction of descriptor systems by interpolatory projection methods,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/130906635.  Google Scholar

[22]

M. Heinkenschloss, D. C. Sorensen and K. Sun, Balanced truncation model reduction for a class of descriptor systems with applications to the Oseen equations,, SIAM J. Sci. Comput., 30 (2008), 1038.  doi: 10.1137/070681910.  Google Scholar

[23]

P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation,, in Finite Element Methods in Flow Problems (eds. J. T. Oden, (1974), 121.   Google Scholar

[24]

P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution,, Textbooks in Mathematics, (2006).  doi: 10.4171/017.  Google Scholar

[25]

J. R. Li and J. White, Low rank solution of Lyapunov equations,, SIAM J. Matrix Anal. Appl., 24 (2002), 260.  doi: 10.1137/S0895479801384937.  Google Scholar

[26]

T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations,, SIAM J. Sci. Comput., 21 (2000), 1401.  doi: 10.1137/S1064827598347666.  Google Scholar

[27]

Y. Saad, Numerical Methods for Large Eigenvalue Problems,, Manchester University Press, (1992).   Google Scholar

[28]

W. H. A. Schilders, H. A. van der Vorst and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78841-6.  Google Scholar

[29]

V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,, SIAM J. Sci. Comput., 29 (2007), 1268.  doi: 10.1137/06066120X.  Google Scholar

[30]

E. D. Sontag, Mathematical Control Theory,, 2nd edition, (1998).  doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[31]

T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation,, Linear Algebra Appl., 415 (2006), 262.  doi: 10.1016/j.laa.2004.01.015.  Google Scholar

[32]

T. Stykel, Gramian-based model reduction for descriptor systems,, Math. Control Signals Systems, 16 (2004), 297.  doi: 10.1007/s00498-004-0141-4.  Google Scholar

[33]

M. S. Tombs and I. Postlethwaite, Truncated balanced realization of a stable nonminimal state-space system,, Internat. J. Control, 46 (1987), 1319.  doi: 10.1080/00207178708933971.  Google Scholar

[34]

B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations,, SIAM J. Matrix Anal. Appl., 31 (2010), 2553.  doi: 10.1137/090764566.  Google Scholar

[35]

T. Wolf, H. K. F. Panzer and B. Lohmann, ADI iteration for Lyapunov equations: a tangential approach and adaptive shift selection,, arXiv e-prints 1312.1142v1, (1312).   Google Scholar

[36]

K. Zhou, G. Salomon and E. Wu, Balanced realization and model reduction for unstable systems,, Internat. J. Robust and Nonlinear Cont., 9 (1999), 183.  doi: 10.1002/(SICI)1099-1239(199903)9:3<121::AID-RNC395>3.0.CO;2-1.  Google Scholar

show all references

References:
[1]

M. I. Ahmad and P. Benner, Interpolatory model reduction techniques for linear second-order descriptor systems,, in Proc. European Control Conf. ECC 2014, (2014), 1075.   Google Scholar

[2]

L. Amodei and J.-M. Buchot, A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation,, Numer. Lin. Alg. Appl., 19 (2012), 700.  doi: 10.1002/nla.799.  Google Scholar

[3]

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems,, SIAM Publications, (2005).  doi: 10.1137/1.9780898718713.  Google Scholar

[4]

A. C. Antoulas, D. C. Sorensen and Y. Zhou, On the decay rate of Hankel singular values and related issues,, Systems Control Lett., 46 (2002), 323.  doi: 10.1016/S0167-6911(02)00147-0.  Google Scholar

[5]

U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations,, SIAM, (1998).  doi: 10.1137/1.9781611971392.  Google Scholar

[6]

E. Bänsch, P. Benner, J. Saak and H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows,, SIAM J. Sci. Comput., 37 (2015).  doi: 10.1137/140980016.  Google Scholar

[7]

S. Barrachina, P. Benner and E. S. Quintana-Ortí, Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function,, Numer. Algorithms, 46 (2007), 351.  doi: 10.1007/s11075-007-9143-x.  Google Scholar

[8]

P. Benner and T. Breiten, On optimality of approximate low rank solutions of large-scale matrix equations,, Systems Control Lett., 67 (2014), 55.  doi: 10.1016/j.sysconle.2014.02.005.  Google Scholar

[9]

P. Benner, P. Kürschner and J. Saak, Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method,, Numer. Algorithms, 62 (2013), 225.  doi: 10.1007/s11075-012-9569-7.  Google Scholar

[10]

P. Benner, P. Kürschner and J. Saak, An improved numerical method for balanced truncation for symmetric second order systems,, Math. Comput. Model. Dyn. Syst., 19 (2013), 593.  doi: 10.1080/13873954.2013.794363.  Google Scholar

[11]

P. Benner, P. Kürschner and J. Saak, Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations,, Electron. Trans. Numer. Anal., 43 (2014), 142.   Google Scholar

[12]

P. Benner, J. R. Li and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems,, Numer. Lin. Alg. Appl., 15 (2008), 755.  doi: 10.1002/nla.622.  Google Scholar

[13]

P. Benner, V. Mehrmann and D. C. Sorensen, Dimension Reduction of Large-Scale Systems, vol. 45 of Lect. Notes Comput. Sci. Eng.,, Springer-Verlag, (2005).  doi: 10.1007/3-540-27909-1.  Google Scholar

[14]

P. Benner and T. Stykel, Numerical solution of projected algebraic Riccati equations,, SIAM J. Numer. Anal, 52 (2014), 581.  doi: 10.1137/130923993.  Google Scholar

[15]

K. A. Cliffe, T. J. Garratt and A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics,, SIAM J. Matrix Anal. Appl., 15 (1994), 1310.  doi: 10.1137/S0895479892233230.  Google Scholar

[16]

B. N. Datta, Numerical Methods for Linear Control Systems,, Elsevier Academic Press, (2004).   Google Scholar

[17]

E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynamics,, European Consortium for Mathematics in Industry, (1998).  doi: 10.1007/978-3-663-09828-7.  Google Scholar

[18]

K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L norms,, Internat. J. Control, 39 (1984), 1115.  doi: 10.1080/00207178408933239.  Google Scholar

[19]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins University Press, (1983).   Google Scholar

[20]

L. Grasedyck and W. Hackbusch, A multigrid method to solve large scale Sylvester equations,, SIAM J. Matrix Anal. Appl., 29 (2007), 870.  doi: 10.1137/040618102.  Google Scholar

[21]

S. Gugercin, T. Stykel and S. Wyatt, Model reduction of descriptor systems by interpolatory projection methods,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/130906635.  Google Scholar

[22]

M. Heinkenschloss, D. C. Sorensen and K. Sun, Balanced truncation model reduction for a class of descriptor systems with applications to the Oseen equations,, SIAM J. Sci. Comput., 30 (2008), 1038.  doi: 10.1137/070681910.  Google Scholar

[23]

P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation,, in Finite Element Methods in Flow Problems (eds. J. T. Oden, (1974), 121.   Google Scholar

[24]

P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution,, Textbooks in Mathematics, (2006).  doi: 10.4171/017.  Google Scholar

[25]

J. R. Li and J. White, Low rank solution of Lyapunov equations,, SIAM J. Matrix Anal. Appl., 24 (2002), 260.  doi: 10.1137/S0895479801384937.  Google Scholar

[26]

T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations,, SIAM J. Sci. Comput., 21 (2000), 1401.  doi: 10.1137/S1064827598347666.  Google Scholar

[27]

Y. Saad, Numerical Methods for Large Eigenvalue Problems,, Manchester University Press, (1992).   Google Scholar

[28]

W. H. A. Schilders, H. A. van der Vorst and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78841-6.  Google Scholar

[29]

V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,, SIAM J. Sci. Comput., 29 (2007), 1268.  doi: 10.1137/06066120X.  Google Scholar

[30]

E. D. Sontag, Mathematical Control Theory,, 2nd edition, (1998).  doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[31]

T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation,, Linear Algebra Appl., 415 (2006), 262.  doi: 10.1016/j.laa.2004.01.015.  Google Scholar

[32]

T. Stykel, Gramian-based model reduction for descriptor systems,, Math. Control Signals Systems, 16 (2004), 297.  doi: 10.1007/s00498-004-0141-4.  Google Scholar

[33]

M. S. Tombs and I. Postlethwaite, Truncated balanced realization of a stable nonminimal state-space system,, Internat. J. Control, 46 (1987), 1319.  doi: 10.1080/00207178708933971.  Google Scholar

[34]

B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations,, SIAM J. Matrix Anal. Appl., 31 (2010), 2553.  doi: 10.1137/090764566.  Google Scholar

[35]

T. Wolf, H. K. F. Panzer and B. Lohmann, ADI iteration for Lyapunov equations: a tangential approach and adaptive shift selection,, arXiv e-prints 1312.1142v1, (1312).   Google Scholar

[36]

K. Zhou, G. Salomon and E. Wu, Balanced realization and model reduction for unstable systems,, Internat. J. Robust and Nonlinear Cont., 9 (1999), 183.  doi: 10.1002/(SICI)1099-1239(199903)9:3<121::AID-RNC395>3.0.CO;2-1.  Google Scholar

[1]

Belinda A. Batten, Hesam Shoori, John R. Singler, Madhuka H. Weerasinghe. Balanced truncation model reduction of a nonlinear cable-mass PDE system with interior damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 83-107. doi: 10.3934/dcdsb.2018162

[2]

M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013

[3]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[4]

Rodrigo Donizete Euzébio, Jaume Llibre. Periodic solutions of El Niño model through the Vallis differential system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3455-3469. doi: 10.3934/dcds.2014.34.3455

[5]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[6]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[7]

Miroslav Bartušek. Existence of noncontinuable solutions of a system of differential equations. Conference Publications, 2009, 2009 (Special) : 54-59. doi: 10.3934/proc.2009.2009.54

[8]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[9]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[10]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[11]

Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differential-algebraic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019232

[12]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient. Conference Publications, 2011, 2011 (Special) : 351-361. doi: 10.3934/proc.2011.2011.351

[13]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[14]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[15]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[16]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[17]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[18]

Min Zou, An-Ping Liu, Zhimin Zhang. Oscillation theorems for impulsive parabolic differential system of neutral type. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2351-2363. doi: 10.3934/dcdsb.2017103

[19]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

[20]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]