-
Previous Article
Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps
- NACO Home
- This Issue
-
Next Article
Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control
Optimal layer reinsurance on the maximization of the adjustment coefficient
1. | School of Mathematical Sciences, Institute of Finance and Statistics, Nanjing Normal University, Jiangsu 210023, China, China |
References:
[1] |
S. Asmussen, Ruin probabilities,, World Scientific Press, (2000).
doi: 10.1142/9789812779311. |
[2] |
E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196.
doi: 10.1016/j.insmatheco.2006.10.015. |
[3] |
C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709. Google Scholar |
[4] |
S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.
doi: 10.1287/moor.20.4.937. |
[5] |
J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93.
doi: 10.2143/AST.37.1.2020800. |
[6] |
J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.
doi: 10.1016/j.insmatheco.2008.05.011. |
[7] |
M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229.
doi: 10.1016/j.insmatheco.2004.12.001. |
[8] |
M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41. Google Scholar |
[9] |
H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979).
|
[10] |
J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991).
doi: 10.1007/978-1-4613-9058-9. |
[11] |
M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97.
doi: 10.2143/AST.40.1.2049220. |
[12] |
M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75.
doi: 10.2143/AST.34.1.504955. |
[13] |
C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.
doi: 10.1016/j.insmatheco.2004.04.004. |
[14] |
M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61.
doi: 10.1016/S0167-6687(00)00066-4. |
[15] |
M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28.
doi: 10.1080/03461230410019222. |
[16] |
Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156.
doi: 10.1016/j.insmatheco.2014.01.011. |
[17] |
Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.
doi: 10.1080/15326340701300894. |
[18] |
Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858.
|
[19] |
Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437. Google Scholar |
[20] |
S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.
doi: 10.1016/j.insmatheco.2007.04.002. |
[21] |
D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.
|
[22] |
H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.
doi: 10.1080/034612301750077338. |
[23] |
H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890.
doi: 10.1214/aoap/1031863173. |
[24] |
X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63.
doi: 10.1002/asmb.637. |
show all references
References:
[1] |
S. Asmussen, Ruin probabilities,, World Scientific Press, (2000).
doi: 10.1142/9789812779311. |
[2] |
E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196.
doi: 10.1016/j.insmatheco.2006.10.015. |
[3] |
C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709. Google Scholar |
[4] |
S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.
doi: 10.1287/moor.20.4.937. |
[5] |
J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93.
doi: 10.2143/AST.37.1.2020800. |
[6] |
J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.
doi: 10.1016/j.insmatheco.2008.05.011. |
[7] |
M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229.
doi: 10.1016/j.insmatheco.2004.12.001. |
[8] |
M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41. Google Scholar |
[9] |
H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979).
|
[10] |
J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991).
doi: 10.1007/978-1-4613-9058-9. |
[11] |
M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97.
doi: 10.2143/AST.40.1.2049220. |
[12] |
M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75.
doi: 10.2143/AST.34.1.504955. |
[13] |
C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.
doi: 10.1016/j.insmatheco.2004.04.004. |
[14] |
M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61.
doi: 10.1016/S0167-6687(00)00066-4. |
[15] |
M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28.
doi: 10.1080/03461230410019222. |
[16] |
Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156.
doi: 10.1016/j.insmatheco.2014.01.011. |
[17] |
Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.
doi: 10.1080/15326340701300894. |
[18] |
Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858.
|
[19] |
Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437. Google Scholar |
[20] |
S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.
doi: 10.1016/j.insmatheco.2007.04.002. |
[21] |
D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.
|
[22] |
H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.
doi: 10.1080/034612301750077338. |
[23] |
H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890.
doi: 10.1214/aoap/1031863173. |
[24] |
X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63.
doi: 10.1002/asmb.637. |
[1] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[2] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[3] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[4] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[5] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[6] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[7] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[8] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[9] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[10] |
Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001 |
[11] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[12] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[13] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[14] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[15] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[16] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[17] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
[18] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[19] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[20] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]