• Previous Article
    Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps
  • NACO Home
  • This Issue
  • Next Article
    Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control
2016, 6(1): 21-34. doi: 10.3934/naco.2016.6.21

Optimal layer reinsurance on the maximization of the adjustment coefficient

1. 

School of Mathematical Sciences, Institute of Finance and Statistics, Nanjing Normal University, Jiangsu 210023, China, China

Received  January 2015 Revised  December 2015 Published  January 2016

In this paper, we study the optimal retentions for an insurance company, which intends to transfer risk by means of a layer reinsurance treaty. Under the criterion of maximizing the adjustment coefficient, the closed form expressions of the optimal results are obtained for the Brownian motion risk model as well as the compound Poisson risk model. Moreover, we conclude that under the expected value principle there exists a special layer reinsurance strategy, i.e., excess of loss reinsurance strategy which is better than any other layer reinsurance strategies. Whereas, under the variance premium principle, the pure excess of loss reinsurance is not the optimal layer reinsurance strategy any longer. Some numerical examples are presented to show the impacts of the parameters as well as the premium principles on the optimal results.
Citation: Xuepeng Zhang, Zhibin Liang. Optimal layer reinsurance on the maximization of the adjustment coefficient. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 21-34. doi: 10.3934/naco.2016.6.21
References:
[1]

S. Asmussen, Ruin probabilities,, World Scientific Press, (2000). doi: 10.1142/9789812779311. Google Scholar

[2]

E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196. doi: 10.1016/j.insmatheco.2006.10.015. Google Scholar

[3]

C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709. Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937. doi: 10.1287/moor.20.4.937. Google Scholar

[5]

J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93. doi: 10.2143/AST.37.1.2020800. Google Scholar

[6]

J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185. doi: 10.1016/j.insmatheco.2008.05.011. Google Scholar

[7]

M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229. doi: 10.1016/j.insmatheco.2004.12.001. Google Scholar

[8]

M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41. Google Scholar

[9]

H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979). Google Scholar

[10]

J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991). doi: 10.1007/978-1-4613-9058-9. Google Scholar

[11]

M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97. doi: 10.2143/AST.40.1.2049220. Google Scholar

[12]

M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75. doi: 10.2143/AST.34.1.504955. Google Scholar

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21. doi: 10.1016/j.insmatheco.2004.04.004. Google Scholar

[14]

M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61. doi: 10.1016/S0167-6687(00)00066-4. Google Scholar

[15]

M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28. doi: 10.1080/03461230410019222. Google Scholar

[16]

Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156. doi: 10.1016/j.insmatheco.2014.01.011. Google Scholar

[17]

Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333. doi: 10.1080/15326340701300894. Google Scholar

[18]

Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858. Google Scholar

[19]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437. Google Scholar

[20]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434. doi: 10.1016/j.insmatheco.2007.04.002. Google Scholar

[21]

D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109. Google Scholar

[22]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55. doi: 10.1080/034612301750077338. Google Scholar

[23]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890. doi: 10.1214/aoap/1031863173. Google Scholar

[24]

X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63. doi: 10.1002/asmb.637. Google Scholar

show all references

References:
[1]

S. Asmussen, Ruin probabilities,, World Scientific Press, (2000). doi: 10.1142/9789812779311. Google Scholar

[2]

E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196. doi: 10.1016/j.insmatheco.2006.10.015. Google Scholar

[3]

C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709. Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937. doi: 10.1287/moor.20.4.937. Google Scholar

[5]

J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93. doi: 10.2143/AST.37.1.2020800. Google Scholar

[6]

J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185. doi: 10.1016/j.insmatheco.2008.05.011. Google Scholar

[7]

M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229. doi: 10.1016/j.insmatheco.2004.12.001. Google Scholar

[8]

M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41. Google Scholar

[9]

H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979). Google Scholar

[10]

J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991). doi: 10.1007/978-1-4613-9058-9. Google Scholar

[11]

M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97. doi: 10.2143/AST.40.1.2049220. Google Scholar

[12]

M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75. doi: 10.2143/AST.34.1.504955. Google Scholar

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21. doi: 10.1016/j.insmatheco.2004.04.004. Google Scholar

[14]

M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61. doi: 10.1016/S0167-6687(00)00066-4. Google Scholar

[15]

M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28. doi: 10.1080/03461230410019222. Google Scholar

[16]

Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156. doi: 10.1016/j.insmatheco.2014.01.011. Google Scholar

[17]

Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333. doi: 10.1080/15326340701300894. Google Scholar

[18]

Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858. Google Scholar

[19]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437. Google Scholar

[20]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434. doi: 10.1016/j.insmatheco.2007.04.002. Google Scholar

[21]

D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109. Google Scholar

[22]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55. doi: 10.1080/034612301750077338. Google Scholar

[23]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890. doi: 10.1214/aoap/1031863173. Google Scholar

[24]

X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63. doi: 10.1002/asmb.637. Google Scholar

[1]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[2]

Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019047

[3]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[4]

Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5571-5601. doi: 10.3934/dcds.2019245

[5]

Zhimin Zhang, Yang Yang, Chaolin Liu. On a perturbed compound Poisson model with varying premium rates. Journal of Industrial & Management Optimization, 2017, 13 (2) : 721-736. doi: 10.3934/jimo.2016043

[6]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[7]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[8]

Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems & Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036

[9]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[10]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[11]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[12]

Xuanhua Peng, Wen Su, Zhimin Zhang. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019038

[13]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[14]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[15]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[16]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[17]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[18]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[19]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

[20]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]