• Previous Article
    Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps
  • NACO Home
  • This Issue
  • Next Article
    Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control
2016, 6(1): 21-34. doi: 10.3934/naco.2016.6.21

Optimal layer reinsurance on the maximization of the adjustment coefficient

1. 

School of Mathematical Sciences, Institute of Finance and Statistics, Nanjing Normal University, Jiangsu 210023, China, China

Received  January 2015 Revised  December 2015 Published  January 2016

In this paper, we study the optimal retentions for an insurance company, which intends to transfer risk by means of a layer reinsurance treaty. Under the criterion of maximizing the adjustment coefficient, the closed form expressions of the optimal results are obtained for the Brownian motion risk model as well as the compound Poisson risk model. Moreover, we conclude that under the expected value principle there exists a special layer reinsurance strategy, i.e., excess of loss reinsurance strategy which is better than any other layer reinsurance strategies. Whereas, under the variance premium principle, the pure excess of loss reinsurance is not the optimal layer reinsurance strategy any longer. Some numerical examples are presented to show the impacts of the parameters as well as the premium principles on the optimal results.
Citation: Xuepeng Zhang, Zhibin Liang. Optimal layer reinsurance on the maximization of the adjustment coefficient. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 21-34. doi: 10.3934/naco.2016.6.21
References:
[1]

S. Asmussen, Ruin probabilities,, World Scientific Press, (2000).  doi: 10.1142/9789812779311.  Google Scholar

[2]

E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196.  doi: 10.1016/j.insmatheco.2006.10.015.  Google Scholar

[3]

C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709.   Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[5]

J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93.  doi: 10.2143/AST.37.1.2020800.  Google Scholar

[6]

J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[7]

M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229.  doi: 10.1016/j.insmatheco.2004.12.001.  Google Scholar

[8]

M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41.   Google Scholar

[9]

H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979).   Google Scholar

[10]

J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4613-9058-9.  Google Scholar

[11]

M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97.  doi: 10.2143/AST.40.1.2049220.  Google Scholar

[12]

M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75.  doi: 10.2143/AST.34.1.504955.  Google Scholar

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[14]

M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61.  doi: 10.1016/S0167-6687(00)00066-4.  Google Scholar

[15]

M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28.  doi: 10.1080/03461230410019222.  Google Scholar

[16]

Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156.  doi: 10.1016/j.insmatheco.2014.01.011.  Google Scholar

[17]

Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[18]

Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858.   Google Scholar

[19]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437.   Google Scholar

[20]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[21]

D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[22]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.  doi: 10.1080/034612301750077338.  Google Scholar

[23]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890.  doi: 10.1214/aoap/1031863173.  Google Scholar

[24]

X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63.  doi: 10.1002/asmb.637.  Google Scholar

show all references

References:
[1]

S. Asmussen, Ruin probabilities,, World Scientific Press, (2000).  doi: 10.1142/9789812779311.  Google Scholar

[2]

E. Bayraktar and V. Young, Minimizing the probability of lifetime ruin under borrowing constraints,, Insurance: Mathematics and Economics, 41 (2007), 196.  doi: 10.1016/j.insmatheco.2006.10.015.  Google Scholar

[3]

C. Bernard and W. Tian, Optimal reinsurance arrangements under tail risk measures,, Journal of Risk and Insurance, 76 (2009), 709.   Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[5]

J. Cai and K. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures,, ASTIN Bulletin, 37 (2007), 93.  doi: 10.2143/AST.37.1.2020800.  Google Scholar

[6]

J. Cai, K. Tan, C. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[7]

M. Centeno, Dependent risks and excess of loss reinsurance,, Insurance: Mathematics and Economics, 37 (2005), 229.  doi: 10.1016/j.insmatheco.2004.12.001.  Google Scholar

[8]

M. Centeno and O. Simũes, Combining quota-share and excess of loss treaties on the reinsurance of n independent risks,, ASTIN Bulletin, 21 (2002), 41.   Google Scholar

[9]

H. Gerber, An Introduction to Mathematical Risk Theory,, In: S. S. Huebner Foundation Monograph, (1979).   Google Scholar

[10]

J. Grandell, Aspects of Risk Theory,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4613-9058-9.  Google Scholar

[11]

M. Guerra and M. Centeno, Optimal reinsurance for variance related premium calculation principles,, ASTIN Bulletin, 40 (2010), 97.  doi: 10.2143/AST.40.1.2049220.  Google Scholar

[12]

M. Hald and H. Schmidli, On the maximization of the adjustment coefficient under proportioal reinsurance,, ASTIN Bulletin, 34 (2004), 75.  doi: 10.2143/AST.34.1.504955.  Google Scholar

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[14]

M. Kaluszka, Optimal reinsurance under mean-variance premium principles,, Insurance: Mathematics and Economics, 28 (2001), 61.  doi: 10.1016/S0167-6687(00)00066-4.  Google Scholar

[15]

M. Kaluszka, Mean-variance optimal reinsurance arrangements,, Scandinavian Actuarial Journal, 1 (2004), 28.  doi: 10.1080/03461230410019222.  Google Scholar

[16]

Z. Liang and E. Bayraktar, Optimal proportional reinsurance and investment with unobservable claim sizes and intensity,, Insurance: Mathematics and Economics, 55 (2014), 156.  doi: 10.1016/j.insmatheco.2014.01.011.  Google Scholar

[17]

Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[18]

Z. Liang and J. Guo, Ruin probabilities under optimal combining quota-share and excess of loss reinsurance,, Acta Mathematica Sinica, 9 (2010), 858.   Google Scholar

[19]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin,, Insurance: Mathematics and Economics, 50 (2012), 437.   Google Scholar

[20]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[21]

D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[22]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.  doi: 10.1080/034612301750077338.  Google Scholar

[23]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, Annals of Applied Probability, 12 (2002), 890.  doi: 10.1214/aoap/1031863173.  Google Scholar

[24]

X. Zhang, M. Zhou and J. Guo, Optimal combinational quota-share and excess of loss reinsurance policies in a dynamic setting,, Applied Stochastic Model in Business and Industry, 23 (2007), 63.  doi: 10.1002/asmb.637.  Google Scholar

[1]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[2]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[3]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[4]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[5]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[6]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[7]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[8]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[9]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[10]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[13]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[14]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[15]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[16]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[17]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[18]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[19]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[20]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]