\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deflation by restriction for the inverse-free preconditioned Krylov subspace method

Abstract Related Papers Cited by
  • A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigenvalues of the definite symmetric generalized eigenvalue problem $Ax = \lambda Bx$. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate the convergence properties of the algorithm with the deflation scheme.
    Mathematics Subject Classification: Primary: 65F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, PA, 2000.doi: 10.1137/1.9780898719581.

    [2]

    L. Bergamaschi, G. Pini and F. Sartoretto, Approximate inverse preconditioning in the parallel solution of sparse eigenproblems, Numer. Linear Alg. Appl., 7 (2000), 99-116.doi: 10.1002/(SICI)1099-1506(200004/05)7:3<99::AID-NLA188>3.3.CO;2-X.

    [3]

    J. Bramble, J. Pasciak and A. Knyazev, A subspace preconditioning algorithm for eigenvector/eigenvalue computation, Adv. Comp. Math., 6 (1996), 150-189.doi: 10.1007/BF02127702.

    [4]

    D. Fokkema, G. Sleijpen and H. Van der Vorst, Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput, 20 (1999), 94-125.doi: 10.1137/S1064827596300073.

    [5]

    G. H. Golub and Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM Journal on Scientific Computing, 24 (2002), 312-334.doi: 10.1137/S1064827500382579.

    [6]

    A. V. Knyazev, Preconditioned eigensolvers-an oxymoron, Electronic Transactions on Numerical Analysis, 7 (1998), 104-123.

    [7]

    A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient, SIAM Journal on Scientific Computing, 23 (2001), 517-541.doi: 10.1137/S1064827500366124.

    [8]

    Q. Liang and Q. Ye, Computing singular values of large matrices with an inverse-free preconditioned krylov subspace method, Electronic Transactions on Numerical Analysis, 42 (2014), 197-221.

    [9]

    R. B. Lehoucq, Analysis And Implementation of An Implicitly Restarted Arnoldi Iteration, Ph.D Thesis, Rice University, 1995.

    [10]

    R. B. Lehoucq and D. C. Sorensen, Deflation techniques within an implicitly restarted Arnoldi iteration, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 789-821.doi: 10.1137/S0895479895281484.

    [11]

    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guides, Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method, SIAM, Philadelphia, 1998.doi: 10.1137/1.9780898719628.

    [12]

    R. Lehoucq and K. Meerbergen, The inexact rational Krylov sequence method, SIAM J. Matrix Anal. Appl., 20 (1998), 131-148.doi: 10.1137/S0895479896311220.

    [13]

    K. Meerbergen and D. Roose, The restarted Arnoldi method applied to iterative linear solvers for the computation of rightmost eigenvalues, SIAM J. Matrix Anal. Appl., 20 (1999), 1-20.doi: 10.1137/S0895479894274255.

    [14]

    J. H. Money and Q. Ye, Algorithm 845: EIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problems, ACM Transactions on Mathematical Software, 31 (2005), 270-279.doi: 10.1145/1067967.1067973.

    [15]

    R. Morgan and D. Scott, Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems, SIAM J. Sci. Stat. Comput., 14 (1993), 585-593.doi: 10.1137/0914037.

    [16]

    Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem, Numerical Linear Algebra and its Applications, 9 (2002), 21-44.doi: 10.1002/nla.246.

    [17]

    B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 1998.doi: 10.1137/1.9781611971163.

    [18]

    P. Quillen and Q. Ye, A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, J. Comp. Appl. Math, 233 (2010), 1298-1313.doi: 10.1016/j.cam.2008.10.071.

    [19]

    Y. Saad, Numerical methods for large eigenvalue problems, Revised Edition, Classics in Applied Mathematics, SIAM, Philadelphia, 2011.doi: 10.1137/1.9781611970739.ch1.

    [20]

    G. Sleijpen and H. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 401-425.doi: 10.1137/S0895479894270427.

    [21]

    A. Stathopoulos and J. R. McCombs, PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM Transaction on Mathematical Software, 37 (2010), 21:1-21:30.

    [22]

    A. Stathopoulos, Y. Saad and C. Fisher, Robust preconditioning of large sparse symmetric eigenvalue problems, J. Comp. Appl. Math., 64 (1995), 197-215.doi: 10.1016/0377-0427(95)00141-7.

    [23]

    H. van der Vorst, G. Sleijpen and M. van Gijzen, Efficient expansion of subspaces in the Jacobi-Davison method for standard and generalized eigenproblems, Electronic Transactions on Numerical Analysis, 7 (1998), 75-89.

    [24]

    E. Vecharynski, C. Yang and F. Xue, Generalized preconditioned locally harmonic residual method for non-Hermitian eigenproblems, Preprint.

    [25]

    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York, 1965.

    [26]

    C. Yang, Convergence analysis of an inexact truncated RQ iterations, Elec. Trans. Numer. Anal., 7 (1998), 40-55.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return