Citation: |
[1] |
G. P. Barker, The lattice of faces of a finite dimensional cone, Linear Algebra and its Applications, 7 (1973), 71-82. |
[2] |
G. P. Barker, Theory of cones, Linear Algebra and its Applications, 39 (1981), 263-291.doi: 10.1016/0024-3795(81)90310-4. |
[3] |
A. I. Barvinok, Problems of distance geometry and convex properties of quadratic maps, Discrete & Computational Geometry, 13 (1995), 189-202.doi: 10.1007/BF02574037. |
[4] |
J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, 1998.doi: 10.1007/978-3-662-03718-8. |
[5] |
S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.doi: 10.1017/CBO9780511804441. |
[6] |
M.-D. Choi, T. Y. Lam and B. Reznick, Sums of squares of real polynomials, in Proceedings of Symposia in Pure Mathematics, 58 (1995), 103-126. |
[7] |
Y. V. Genin, Y. Hachez, Y. Nesterov and P. Van Dooren, Convex optimization over positive polynomials and filter design, in Proceedings UKACC Int. Conf. Control 2000, 2000, Paper SS41. |
[8] |
J. S. Geronimo and M.-J. Lai, Factorization of multivariate positive Laurent polynomials, Journal of Approximation Theory, 139 (2006), 327-345.doi: 10.1016/j.jat.2005.09.010. |
[9] |
O. Güler, Barrier function in interior point methods, Mathematics of Operations Research, 21 (1996), 860-885.doi: 10.1287/moor.21.4.860. |
[10] |
R. D. Hill and S. R. Waters, On the cone of positive semidefinite matrices, Linear Algebra and its Applications, 90 (1987), 81-88.doi: 10.1016/0024-3795(87)90307-7. |
[11] |
W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948. |
[12] |
J. B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM Review, 49 (2007), 651-669.doi: 10.1137/070693709. |
[13] |
T. H. Le, L. Sorber and M. Van Barel, The Pythagoras number of real sum of squares polynomials and sum of square magnitudes of polynomials, Calcolo, 50 (2013), 283-303.doi: 10.1007/s10092-012-0068-y. |
[14] |
T. H. Le and M. Van Barel, A convex optimization method to solve a filter design problem, Journal of Computational and Applied Mathematics, 255 (2014), 183-192.doi: 10.1016/j.cam.2013.04.044. |
[15] |
G. Marsaglia and G. P. H. Styan, When does rank(A+B) = rank(A) + rank(B)?, Canadian Mathematical Bulletin, 15 (1972), 451-452. |
[16] |
G. Pataki, Cone-LP's and semidefinite programs: Geometry and a simplex-type method, in Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, 1084 (1996), 162-174.doi: 10.1007/3-540-61310-2_13. |
[17] |
G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Mathematics of Operations Research, 23 (1998), 339-358.doi: 10.1287/moor.23.2.339. |
[18] |
G. Pataki, The Geometry of Semidefinite Programming, in Handbook of Semidefinite Programming: Theory, Algorithms, and Applications (eds. H. Wolkowicz, R. Saigal and L. Vandenberghe), International series in operations research and management science, Kluwer Academic Publishers, 2000.doi: 10.1007/978-1-4615-4381-7. |
[19] |
A. Prestel and C. N. Delzell, Positive Polynomials, Springer Monographs in Mathematics, Springer, 2001.doi: 10.1007/978-3-662-04648-7. |
[20] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. |