\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On bounds of the Pythagoras number of the sum of square magnitudes of Laurent polynomials

Abstract / Introduction Related Papers Cited by
  • This paper presents a lower and upper bound of the Pythagoras number of sum of square magnitudes of Laurent polynomials (sosm-polynomials). To prove these bounds, properties of the corresponding system of quadratic polynomial equations are used. Applying this method, a new proof for the best (known until now) upper bound of the Pythagoras number of real polynomials is also presented.
    Mathematics Subject Classification: Primary: 11E25, 12Y05; Secondary: 65H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. P. Barker, The lattice of faces of a finite dimensional cone, Linear Algebra and its Applications, 7 (1973), 71-82.

    [2]

    G. P. Barker, Theory of cones, Linear Algebra and its Applications, 39 (1981), 263-291.doi: 10.1016/0024-3795(81)90310-4.

    [3]

    A. I. Barvinok, Problems of distance geometry and convex properties of quadratic maps, Discrete & Computational Geometry, 13 (1995), 189-202.doi: 10.1007/BF02574037.

    [4]

    J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, 1998.doi: 10.1007/978-3-662-03718-8.

    [5]

    S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.doi: 10.1017/CBO9780511804441.

    [6]

    M.-D. Choi, T. Y. Lam and B. Reznick, Sums of squares of real polynomials, in Proceedings of Symposia in Pure Mathematics, 58 (1995), 103-126.

    [7]

    Y. V. Genin, Y. Hachez, Y. Nesterov and P. Van Dooren, Convex optimization over positive polynomials and filter design, in Proceedings UKACC Int. Conf. Control 2000, 2000, Paper SS41.

    [8]

    J. S. Geronimo and M.-J. Lai, Factorization of multivariate positive Laurent polynomials, Journal of Approximation Theory, 139 (2006), 327-345.doi: 10.1016/j.jat.2005.09.010.

    [9]

    O. Güler, Barrier function in interior point methods, Mathematics of Operations Research, 21 (1996), 860-885.doi: 10.1287/moor.21.4.860.

    [10]

    R. D. Hill and S. R. Waters, On the cone of positive semidefinite matrices, Linear Algebra and its Applications, 90 (1987), 81-88.doi: 10.1016/0024-3795(87)90307-7.

    [11]

    W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.

    [12]

    J. B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM Review, 49 (2007), 651-669.doi: 10.1137/070693709.

    [13]

    T. H. Le, L. Sorber and M. Van Barel, The Pythagoras number of real sum of squares polynomials and sum of square magnitudes of polynomials, Calcolo, 50 (2013), 283-303.doi: 10.1007/s10092-012-0068-y.

    [14]

    T. H. Le and M. Van Barel, A convex optimization method to solve a filter design problem, Journal of Computational and Applied Mathematics, 255 (2014), 183-192.doi: 10.1016/j.cam.2013.04.044.

    [15]

    G. Marsaglia and G. P. H. Styan, When does rank(A+B) = rank(A) + rank(B)?, Canadian Mathematical Bulletin, 15 (1972), 451-452.

    [16]

    G. Pataki, Cone-LP's and semidefinite programs: Geometry and a simplex-type method, in Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, 1084 (1996), 162-174.doi: 10.1007/3-540-61310-2_13.

    [17]

    G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Mathematics of Operations Research, 23 (1998), 339-358.doi: 10.1287/moor.23.2.339.

    [18]

    G. Pataki, The Geometry of Semidefinite Programming, in Handbook of Semidefinite Programming: Theory, Algorithms, and Applications (eds. H. Wolkowicz, R. Saigal and L. Vandenberghe), International series in operations research and management science, Kluwer Academic Publishers, 2000.doi: 10.1007/978-1-4615-4381-7.

    [19]

    A. Prestel and C. N. Delzell, Positive Polynomials, Springer Monographs in Mathematics, Springer, 2001.doi: 10.1007/978-3-662-04648-7.

    [20]

    R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return