2016, 6(2): 103-113. doi: 10.3934/naco.2016002

Index-proper nonnegative splittings of matrices

1. 

Department of Mathematics, National Institute of Technology Raipur, Raipur - 492 010, India

Received  November 2014 Revised  April 2016 Published  June 2016

The theory of splitting is a useful tool for finding solution of a system of linear equations. Many woks are going on for singular system of linear equations. In this article, we have introduced a new splitting called index-proper nonnegative splitting for singular square matrices. Several convergence and comparison results are also established. We then apply the same theory to double splitting.
Citation: Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications,, Springer-Verlag, (2003). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[2]

A. K. Baliarsingh and L. Jena, A note on index-proper multisplittings of matrices,, Banach J. Math. Anal., 9 (2015), 384. doi: 10.15352/bjma/09-4-19. Google Scholar

[3]

A. K. Baliarsingh and D. Mishra, Comparison results for proper nonnegative splittings of matrices,, Results. Math., (2015). doi: 10.1007/s00025-015-0504-9. Google Scholar

[4]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145. Google Scholar

[5]

L. Jena, Extensions of regular and weak regular splittings to real square singular matrices,, submitted., (). Google Scholar

[6]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra Appl., 437 (2012), 1162. doi: 10.1016/j.laa.2012.04.009. Google Scholar

[7]

L. Jena and S. Pani, Index-range monotonicity and index proper splittings of matrices,, Numer. Algebra Control Optim, 3 (2013), 379. doi: 10.3934/naco.2013.3.379. Google Scholar

[8]

L. Jena, D. Mishra and S. Pani, Convergence and comparisons of single and double decompositions of rectangular matrices,, Calcolo, 51 (2014), 141. doi: 10.1007/s10092-013-0079-3. Google Scholar

[9]

I. Marek and D. B. Szyld, Comparison theorems for weak splittings of bounded operators,, Numer. Math., 58 (1990), 387. doi: 10.1007/BF01385632. Google Scholar

[10]

D. Mishra, Nonnegative splittings for rectangular matrices,, Comput. Math. Appl., 67 (2014), 136. doi: 10.1016/j.camwa.2013.10.012. Google Scholar

[11]

S. Q. Shen and T. Z. Huang, Convergence and comparison theorems for double splittings of matrices,, Comput. Math. Appl., 51 (2006), 1751. doi: 10.1016/j.camwa.2006.02.006. Google Scholar

[12]

Y. Song, Comparison theorems for splittings of matrices,, Numer. Math., 92 (2002), 563. doi: 10.1007/s002110100333. Google Scholar

[13]

R. S. Varga, Matrix Iterative Analysis,, Springer-Verlag, (2000). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[14]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115. doi: 10.1016/S0096-3003(97)10098-4. Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications,, Springer-Verlag, (2003). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[2]

A. K. Baliarsingh and L. Jena, A note on index-proper multisplittings of matrices,, Banach J. Math. Anal., 9 (2015), 384. doi: 10.15352/bjma/09-4-19. Google Scholar

[3]

A. K. Baliarsingh and D. Mishra, Comparison results for proper nonnegative splittings of matrices,, Results. Math., (2015). doi: 10.1007/s00025-015-0504-9. Google Scholar

[4]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145. Google Scholar

[5]

L. Jena, Extensions of regular and weak regular splittings to real square singular matrices,, submitted., (). Google Scholar

[6]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra Appl., 437 (2012), 1162. doi: 10.1016/j.laa.2012.04.009. Google Scholar

[7]

L. Jena and S. Pani, Index-range monotonicity and index proper splittings of matrices,, Numer. Algebra Control Optim, 3 (2013), 379. doi: 10.3934/naco.2013.3.379. Google Scholar

[8]

L. Jena, D. Mishra and S. Pani, Convergence and comparisons of single and double decompositions of rectangular matrices,, Calcolo, 51 (2014), 141. doi: 10.1007/s10092-013-0079-3. Google Scholar

[9]

I. Marek and D. B. Szyld, Comparison theorems for weak splittings of bounded operators,, Numer. Math., 58 (1990), 387. doi: 10.1007/BF01385632. Google Scholar

[10]

D. Mishra, Nonnegative splittings for rectangular matrices,, Comput. Math. Appl., 67 (2014), 136. doi: 10.1016/j.camwa.2013.10.012. Google Scholar

[11]

S. Q. Shen and T. Z. Huang, Convergence and comparison theorems for double splittings of matrices,, Comput. Math. Appl., 51 (2006), 1751. doi: 10.1016/j.camwa.2006.02.006. Google Scholar

[12]

Y. Song, Comparison theorems for splittings of matrices,, Numer. Math., 92 (2002), 563. doi: 10.1007/s002110100333. Google Scholar

[13]

R. S. Varga, Matrix Iterative Analysis,, Springer-Verlag, (2000). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[14]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115. doi: 10.1016/S0096-3003(97)10098-4. Google Scholar

[1]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[2]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[3]

Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379

[4]

Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031

[5]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[6]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[7]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[8]

Jochen Brüning, Franz W. Kamber, Ken Richardson. The equivariant index theorem for transversally elliptic operators and the basic index theorem for Riemannian foliations. Electronic Research Announcements, 2010, 17: 138-154. doi: 10.3934/era.2010.17.138

[9]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[10]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[11]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[12]

G. Conner, Christopher P. Grant, Mark H. Meilstrup. A Sharkovsky theorem for non-locally connected spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3485-3499. doi: 10.3934/dcds.2012.32.3485

[13]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[14]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[15]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[16]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[17]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[18]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[19]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[20]

Roberta Fabbri, Russell Johnson, Carmen Núñez. On the Yakubovich frequency theorem for linear non-autonomous control processes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 677-704. doi: 10.3934/dcds.2003.9.677

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]