\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Derivatives of eigenvalues and Jordan frames

Abstract Related Papers Cited by
  • Every element in a Euclidean Jordan algebra has a spectral decomposition. This spectral decomposition is generalization of the spectral decompositions of a matrix. In the context of Euclidean Jordan algebras, this is written using eigenvalues and the so-called Jordan frame. In this paper we deduce the derivative of eigenvalues in the context of Euclidean Jordan algebras. We also deduce the derivative of the elements of a Jordan frame associated to the spectral decomposition.
    Mathematics Subject Classification: Primary: 90C25, 17C27; Secondary: 58B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Baes, Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras, Linear Algebra Appl., 422 (2007), 664-700.doi: 10.1016/j.laa.2006.11.025.

    [2]

    Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM Journal on Optimization, 15 (2004), 101-128.doi: 10.1137/S1052623403423114.

    [3]

    J. Faraut and A. Korányi, Analysis on Symmetric Cones, The Clarendon Press Oxford University Press, New York, 1994.

    [4]

    L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 86 (1997), 149-175.doi: 10.1016/S0377-0427(97)00153-2.

    [5]

    L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1 (1997), 331-357.doi: 10.1023/A:1009701824047.

    [6]

    L. Faybusovich and R. Arana, A long-step primal-dual algorithm for the symmetric programming problem, Systems Control Lett., 43 (2001), 3-7.doi: 10.1016/S0167-6911(01)00092-5.

    [7]

    L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z., 239 (2002), 117-129.doi: 10.1007/s002090100286.

    [8]

    G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior-point method for symmetric optimization, European Journal of Operational Research, 214 (2011), 473-484.doi: 10.1016/j.ejor.2011.02.022.

    [9]

    R. A. Hauser and O. Güler, Self-scaled barrier functions on symmetric cones and their classification, Found. Comput. Math., 2 (2002), 121-143.

    [10]

    R. A. Hauser and Y. Lim, Self-scaled barriers for irreducible symmetric cones, SIAM J. Optim., 12 (2002), 715-723.doi: 10.1137/S1052623400370953.

    [11]

    Z.-H. Huang and T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comput. Optim. Appl., 450 (2010), 557-579.doi: 10.1007/s10589-008-9180-y.

    [12]

    B. Kheirfam, A corrector-predictor path-following method for convex quadratic symmetric cone optimization, Journal of Optimization Theory and Applications, 164 (2015), 246-260.doi: 10.1007/s10957-014-0554-2.

    [13]

    M. Kojima and M. Muramatsu, An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones, Math. Program., 110 (2007), 315-336.doi: 10.1007/s10107-006-0004-5.

    [14]

    P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964), 377-387.

    [15]

    G. Lesaja and C. Roos, Kernel-based interior-point methods for monotone linear complementarity problems over symmetric cones, Journal of Optimization Theory and Applications, 150 (2011), 444-474.doi: 10.1007/s10957-011-9848-9.

    [16]

    H. Liu, X. Yang and C. Liu, A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming, Journal of Optimization Theory and Applications, 158 (2013), 796-815.doi: 10.1007/s10957-013-0303-y.

    [17]

    Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming, SIAM: Studies in Applied and Numerical Mathematics, Philadelphia, 1994.doi: 10.1137/1.9781611970791.

    [18]

    S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones, Math. Program., 96 (2003), 409-438.doi: 10.1007/s10107-003-0380-z.

    [19]

    S. H. Schmieta and F. Alizadeh, Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones, Math. Oper. Res., 26 (2001), 543-564.doi: 10.1287/moor.26.3.543.10582.

    [20]

    M. V. C. Vieira, Interior-point methods based on kernel functions for symmetric optimization, Optimization Methods and Software, 27 (2012), 513-537.doi: 10.1080/10556788.2010.544877.

    [21]

    G. Q. Wang, C. J. Yub and K. L. Teo, A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization, Applied Mathematics and Computation, 221 (2013), 329-343.doi: 10.1016/j.amc.2013.06.064.

    [22]

    Z. Yu, Y. Zhu and Q. Cao, On the convergence of central path and generalized proximal point method for symmetric cone linear programming, Applied Mathematics & Information Sciences, 7 (2103), 2327-2333.doi: 10.12785/amis/070624.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(337) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return