2016, 6(2): 127-151. doi: 10.3934/naco.2016004

Output feedback overlapping control design of interconnected systems with input saturation

1. 

Distributed Control Research Lab, Systems Engineering Department, KFUPM, P. O. Box 5067, Dhahran 31261, Saudi Arabia

Received  March 2015 Revised  April 2016 Published  June 2016

In this paper, we establish new results to the problem of output feedback control design for a class of nonlinear interconnected continuous-time systems subject to input saturation. New schemes based on overlapping design methodology are developed for both static and dynamic output feedback control structures. The theoretical developments are illustrated by numerical simulations of a linearized nuclear power plant model.
Citation: Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004
References:
[1]

H. Akkurt, Development of a Control Model for a PWR,, M. Sc. Thesis, (1996).   Google Scholar

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook,, Vienna, (1999).   Google Scholar

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization,, Int. J. Control, 61 (1995), 559.  doi: 10.1080/00207179508921918.  Google Scholar

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark,, IEEE Trans. Control Systems Technology, 13 (2005), 663.   Google Scholar

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 375.  doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. American Control Conference, (2006), 5239.   Google Scholar

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants,, IEEE Trans. Automat. Control, 23 (1978), 405.   Google Scholar

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control,, Int. J. Robust and Nonlinear Control, 4 (1994), 421.  doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design,, Birkhauser, (2001).   Google Scholar

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set,, J. Optimization Theory and Applications, 34 (1981), 279.  doi: 10.1007/BF00935477.  Google Scholar

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion,, Control-Theory and Advanced Technol., 2 (1986), 155.   Google Scholar

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems,, IEEE Trans on Autom Control, 55 (2010), 1964.  doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control,, Marcel Dekker, (2002).   Google Scholar

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization,, Ind. Eng. Chem. Res., 35 (1996), 746.   Google Scholar

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant,, Nuclear Technology, 30 (1976), 299.   Google Scholar

[16]

Z. Lin, Low Gain Feedback,, Springer-Verlag, (1998).   Google Scholar

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206.  doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays,, J. Optimization Theory and Applications, 143 (2009), 497.  doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays,, European J. Control, 15 (2009), 624.  doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays,, IEEE Tran. Automatic Control, 54 (2009), 2663.  doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems,, CRC Press, (2010).   Google Scholar

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems,, Optimal Control Applications and Methods, 31 (2010), 81.  doi: 10.1002/oca.884.  Google Scholar

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays,, Optimal Control Applications and Methods, 31 (2010), 273.  doi: 10.1002/oca.904.  Google Scholar

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints,, Springer-Verlag, (2011).   Google Scholar

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems,, Int. J. Innovative Computing, 9 (2013).   Google Scholar

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th IEEE Conference on Decision and Control, (1998), 401.   Google Scholar

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications,, Annual Reviews in Control, 31 (2007), 27.   Google Scholar

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Control, 41 (1996), 368.  doi: 10.1109/9.486638.  Google Scholar

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization,, IEEE Trans. Automat. Control, 42 (1997), 896.  doi: 10.1109/9.599969.  Google Scholar

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control,, Delft Center for Systems and Control, (2005).   Google Scholar

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles,, Automatica, 40 (2004), 1285.  doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,, Systems and Control Letters, 58 (2009), 271.  doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, Proc. American Control Conference, (2005), 2082.   Google Scholar

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (2007), 122.  doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems,, IMA Journal of Mathematical Control and Info., 24 (2007), 57.  doi: 10.1093/imamci/dnl007.  Google Scholar

show all references

References:
[1]

H. Akkurt, Development of a Control Model for a PWR,, M. Sc. Thesis, (1996).   Google Scholar

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook,, Vienna, (1999).   Google Scholar

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization,, Int. J. Control, 61 (1995), 559.  doi: 10.1080/00207179508921918.  Google Scholar

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark,, IEEE Trans. Control Systems Technology, 13 (2005), 663.   Google Scholar

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 375.  doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. American Control Conference, (2006), 5239.   Google Scholar

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants,, IEEE Trans. Automat. Control, 23 (1978), 405.   Google Scholar

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control,, Int. J. Robust and Nonlinear Control, 4 (1994), 421.  doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design,, Birkhauser, (2001).   Google Scholar

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set,, J. Optimization Theory and Applications, 34 (1981), 279.  doi: 10.1007/BF00935477.  Google Scholar

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion,, Control-Theory and Advanced Technol., 2 (1986), 155.   Google Scholar

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems,, IEEE Trans on Autom Control, 55 (2010), 1964.  doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control,, Marcel Dekker, (2002).   Google Scholar

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization,, Ind. Eng. Chem. Res., 35 (1996), 746.   Google Scholar

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant,, Nuclear Technology, 30 (1976), 299.   Google Scholar

[16]

Z. Lin, Low Gain Feedback,, Springer-Verlag, (1998).   Google Scholar

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206.  doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays,, J. Optimization Theory and Applications, 143 (2009), 497.  doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays,, European J. Control, 15 (2009), 624.  doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays,, IEEE Tran. Automatic Control, 54 (2009), 2663.  doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems,, CRC Press, (2010).   Google Scholar

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems,, Optimal Control Applications and Methods, 31 (2010), 81.  doi: 10.1002/oca.884.  Google Scholar

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays,, Optimal Control Applications and Methods, 31 (2010), 273.  doi: 10.1002/oca.904.  Google Scholar

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints,, Springer-Verlag, (2011).   Google Scholar

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems,, Int. J. Innovative Computing, 9 (2013).   Google Scholar

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th IEEE Conference on Decision and Control, (1998), 401.   Google Scholar

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications,, Annual Reviews in Control, 31 (2007), 27.   Google Scholar

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Control, 41 (1996), 368.  doi: 10.1109/9.486638.  Google Scholar

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization,, IEEE Trans. Automat. Control, 42 (1997), 896.  doi: 10.1109/9.599969.  Google Scholar

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control,, Delft Center for Systems and Control, (2005).   Google Scholar

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles,, Automatica, 40 (2004), 1285.  doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,, Systems and Control Letters, 58 (2009), 271.  doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, Proc. American Control Conference, (2005), 2082.   Google Scholar

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (2007), 122.  doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems,, IMA Journal of Mathematical Control and Info., 24 (2007), 57.  doi: 10.1093/imamci/dnl007.  Google Scholar

[1]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[2]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[3]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[4]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[5]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[6]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control & Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[7]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[8]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[9]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[10]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[11]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

[12]

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591

[13]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[14]

Farida Benmakrouha, Christiane Hespel, Edouard Monnier. Drawing the output of dynamical systems by juxtaposing local outputs. Conference Publications, 2011, 2011 (Special) : 145-154. doi: 10.3934/proc.2011.2011.145

[15]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics & Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[16]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[17]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[18]

Diego Napp, Carmen Perea, Raquel Pinto. Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 2010, 4 (4) : 533-545. doi: 10.3934/amc.2010.4.533

[19]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[20]

Liming Wang. A passivity-based stability criterion for reaction diffusion systems with interconnected structure. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 303-323. doi: 10.3934/dcdsb.2012.17.303

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]