2016, 6(2): 127-151. doi: 10.3934/naco.2016004

Output feedback overlapping control design of interconnected systems with input saturation

1. 

Distributed Control Research Lab, Systems Engineering Department, KFUPM, P. O. Box 5067, Dhahran 31261, Saudi Arabia

Received  March 2015 Revised  April 2016 Published  June 2016

In this paper, we establish new results to the problem of output feedback control design for a class of nonlinear interconnected continuous-time systems subject to input saturation. New schemes based on overlapping design methodology are developed for both static and dynamic output feedback control structures. The theoretical developments are illustrated by numerical simulations of a linearized nuclear power plant model.
Citation: Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004
References:
[1]

H. Akkurt, Development of a Control Model for a PWR,, M. Sc. Thesis, (1996).   Google Scholar

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook,, Vienna, (1999).   Google Scholar

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization,, Int. J. Control, 61 (1995), 559.  doi: 10.1080/00207179508921918.  Google Scholar

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark,, IEEE Trans. Control Systems Technology, 13 (2005), 663.   Google Scholar

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 375.  doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. American Control Conference, (2006), 5239.   Google Scholar

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants,, IEEE Trans. Automat. Control, 23 (1978), 405.   Google Scholar

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control,, Int. J. Robust and Nonlinear Control, 4 (1994), 421.  doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design,, Birkhauser, (2001).   Google Scholar

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set,, J. Optimization Theory and Applications, 34 (1981), 279.  doi: 10.1007/BF00935477.  Google Scholar

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion,, Control-Theory and Advanced Technol., 2 (1986), 155.   Google Scholar

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems,, IEEE Trans on Autom Control, 55 (2010), 1964.  doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control,, Marcel Dekker, (2002).   Google Scholar

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization,, Ind. Eng. Chem. Res., 35 (1996), 746.   Google Scholar

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant,, Nuclear Technology, 30 (1976), 299.   Google Scholar

[16]

Z. Lin, Low Gain Feedback,, Springer-Verlag, (1998).   Google Scholar

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206.  doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays,, J. Optimization Theory and Applications, 143 (2009), 497.  doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays,, European J. Control, 15 (2009), 624.  doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays,, IEEE Tran. Automatic Control, 54 (2009), 2663.  doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems,, CRC Press, (2010).   Google Scholar

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems,, Optimal Control Applications and Methods, 31 (2010), 81.  doi: 10.1002/oca.884.  Google Scholar

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays,, Optimal Control Applications and Methods, 31 (2010), 273.  doi: 10.1002/oca.904.  Google Scholar

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints,, Springer-Verlag, (2011).   Google Scholar

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems,, Int. J. Innovative Computing, 9 (2013).   Google Scholar

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th IEEE Conference on Decision and Control, (1998), 401.   Google Scholar

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications,, Annual Reviews in Control, 31 (2007), 27.   Google Scholar

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Control, 41 (1996), 368.  doi: 10.1109/9.486638.  Google Scholar

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization,, IEEE Trans. Automat. Control, 42 (1997), 896.  doi: 10.1109/9.599969.  Google Scholar

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control,, Delft Center for Systems and Control, (2005).   Google Scholar

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles,, Automatica, 40 (2004), 1285.  doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,, Systems and Control Letters, 58 (2009), 271.  doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, Proc. American Control Conference, (2005), 2082.   Google Scholar

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (2007), 122.  doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems,, IMA Journal of Mathematical Control and Info., 24 (2007), 57.  doi: 10.1093/imamci/dnl007.  Google Scholar

show all references

References:
[1]

H. Akkurt, Development of a Control Model for a PWR,, M. Sc. Thesis, (1996).   Google Scholar

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook,, Vienna, (1999).   Google Scholar

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization,, Int. J. Control, 61 (1995), 559.  doi: 10.1080/00207179508921918.  Google Scholar

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark,, IEEE Trans. Control Systems Technology, 13 (2005), 663.   Google Scholar

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators,, Int. J. Robust Nonlinear Control, 5 (1995), 375.  doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop,, Proc. American Control Conference, (2006), 5239.   Google Scholar

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants,, IEEE Trans. Automat. Control, 23 (1978), 405.   Google Scholar

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control,, Int. J. Robust and Nonlinear Control, 4 (1994), 421.  doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design,, Birkhauser, (2001).   Google Scholar

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set,, J. Optimization Theory and Applications, 34 (1981), 279.  doi: 10.1007/BF00935477.  Google Scholar

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion,, Control-Theory and Advanced Technol., 2 (1986), 155.   Google Scholar

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems,, IEEE Trans on Autom Control, 55 (2010), 1964.  doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control,, Marcel Dekker, (2002).   Google Scholar

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization,, Ind. Eng. Chem. Res., 35 (1996), 746.   Google Scholar

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant,, Nuclear Technology, 30 (1976), 299.   Google Scholar

[16]

Z. Lin, Low Gain Feedback,, Springer-Verlag, (1998).   Google Scholar

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation,, IET Control Theory Appl., 4 (2010), 206.  doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays,, J. Optimization Theory and Applications, 143 (2009), 497.  doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays,, European J. Control, 15 (2009), 624.  doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays,, IEEE Tran. Automatic Control, 54 (2009), 2663.  doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems,, CRC Press, (2010).   Google Scholar

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems,, Optimal Control Applications and Methods, 31 (2010), 81.  doi: 10.1002/oca.884.  Google Scholar

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays,, Optimal Control Applications and Methods, 31 (2010), 273.  doi: 10.1002/oca.904.  Google Scholar

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints,, Springer-Verlag, (2011).   Google Scholar

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems,, Int. J. Innovative Computing, 9 (2013).   Google Scholar

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs,, Proc. the 37th IEEE Conference on Decision and Control, (1998), 401.   Google Scholar

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications,, Annual Reviews in Control, 31 (2007), 27.   Google Scholar

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators,, IEEE Trans. Automat. Control, 41 (1996), 368.  doi: 10.1109/9.486638.  Google Scholar

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization,, IEEE Trans. Automat. Control, 42 (1997), 896.  doi: 10.1109/9.599969.  Google Scholar

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control,, Delft Center for Systems and Control, (2005).   Google Scholar

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles,, Automatica, 40 (2004), 1285.  doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,, Systems and Control Letters, 58 (2009), 271.  doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design,, Proc. American Control Conference, (2005), 2082.   Google Scholar

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation,, IEEE Trans. Autom. Control, 52 (2007), 122.  doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method,, Automatica, 37 (2001), 565.  doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems,, IMA Journal of Mathematical Control and Info., 24 (2007), 57.  doi: 10.1093/imamci/dnl007.  Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[3]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[4]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[9]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[12]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[14]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[15]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[18]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[19]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[20]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

 Impact Factor: 

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]