• Previous Article
    A new smoothing approach to exact penalty functions for inequality constrained optimization problems
  • NACO Home
  • This Issue
  • Next Article
    Output feedback overlapping control design of interconnected systems with input saturation
2016, 6(2): 153-160. doi: 10.3934/naco.2016005

Solving Malfatti's high dimensional problem by global optimization

1. 

Institute for Systems Dynamics and Control Theory, SB of RAS, 664033 Irkutsk, Russian Federation, Russian Federation, Russian Federation

Received  October 2015 Revised  April 2016 Published  June 2016

We generalize Malfatti's problem which dates back to 200 years ago as a global optimization problem in a high dimensional space. The problem has been formulated as the convex maximization problem over a nonconvex set. Global optimality condition by Strekalovsky [11] has been applied to this problem. For solving numerically Malfatti's problem, we propose the algorithm in [3] which converges globally. Some computational results are provided.
Citation: Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005
References:
[1]

M. Andreatta, A. Bezdek and Jan P. Boroński., The problem of Malfatti: Two centuries of debate,, The Mathematical Intelligencer, 33 (2011), 72.  doi: 10.1007/s00283-010-9154-7.  Google Scholar

[2]

R. Enkhbat, Global optimization approach to Malfatti's problem,, Accepted for JOGO and to appear in 2016., (2016).   Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set,, Journal of Global Optimization, 8 (1996), 379.  doi: 10.1007/BF02403999.  Google Scholar

[4]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem,, Math. Mag., 41 (1967), 251.   Google Scholar

[5]

M. Goldberg, On the original Malfatti problem,, Math. Mag., 40 (1967), 241.   Google Scholar

[6]

G. A. Los, Malfatti's Optimization Problem [in Russian],, Dep. Ukr. NIINTI, (1988).   Google Scholar

[7]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle,, Proc. London Math. Soc., 2 (1930), 287.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[8]

C. Malfatti, Memoria sopra una problema stereotomico,, Memoria di Matematica e di Fisica della Societa italiana della Scienze, ().   Google Scholar

[9]

V. N. Nefedov, Finding the global maximum of a function of several variables on a set given by inequality constraints,, Journal of Numerical Mathematics and Mathematical Physics, 27 (1987), 35.   Google Scholar

[10]

T. Saaty, Integer optimization methods and related extremal problems [Russian translation],, Nauka, 10 (1803), 235.   Google Scholar

[11]

A. S. Strekalovsky, On the global extrema problem,, Soviet Math. Doklad, 292 (1987), 1062.   Google Scholar

[12]

H. Tverberg, A generalization of Radon's theorem,, Journal of the London Mathematical Society, 41 (1966), 123.   Google Scholar

[13]

V. A. Zalgaller, An inequality for acute triangles,, Ukr. Geom. Sb., 34 (1991), 10.   Google Scholar

[14]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem,, Journal of Mathematical Sciences, 72 (1994), 3163.  doi: 10.1007/BF01249514.  Google Scholar

show all references

References:
[1]

M. Andreatta, A. Bezdek and Jan P. Boroński., The problem of Malfatti: Two centuries of debate,, The Mathematical Intelligencer, 33 (2011), 72.  doi: 10.1007/s00283-010-9154-7.  Google Scholar

[2]

R. Enkhbat, Global optimization approach to Malfatti's problem,, Accepted for JOGO and to appear in 2016., (2016).   Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set,, Journal of Global Optimization, 8 (1996), 379.  doi: 10.1007/BF02403999.  Google Scholar

[4]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem,, Math. Mag., 41 (1967), 251.   Google Scholar

[5]

M. Goldberg, On the original Malfatti problem,, Math. Mag., 40 (1967), 241.   Google Scholar

[6]

G. A. Los, Malfatti's Optimization Problem [in Russian],, Dep. Ukr. NIINTI, (1988).   Google Scholar

[7]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle,, Proc. London Math. Soc., 2 (1930), 287.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[8]

C. Malfatti, Memoria sopra una problema stereotomico,, Memoria di Matematica e di Fisica della Societa italiana della Scienze, ().   Google Scholar

[9]

V. N. Nefedov, Finding the global maximum of a function of several variables on a set given by inequality constraints,, Journal of Numerical Mathematics and Mathematical Physics, 27 (1987), 35.   Google Scholar

[10]

T. Saaty, Integer optimization methods and related extremal problems [Russian translation],, Nauka, 10 (1803), 235.   Google Scholar

[11]

A. S. Strekalovsky, On the global extrema problem,, Soviet Math. Doklad, 292 (1987), 1062.   Google Scholar

[12]

H. Tverberg, A generalization of Radon's theorem,, Journal of the London Mathematical Society, 41 (1966), 123.   Google Scholar

[13]

V. A. Zalgaller, An inequality for acute triangles,, Ukr. Geom. Sb., 34 (1991), 10.   Google Scholar

[14]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem,, Journal of Mathematical Sciences, 72 (1994), 3163.  doi: 10.1007/BF01249514.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[13]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[14]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[17]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[18]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

 Impact Factor: 

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (2)

[Back to Top]