• Previous Article
    A new smoothing approach to exact penalty functions for inequality constrained optimization problems
  • NACO Home
  • This Issue
  • Next Article
    Output feedback overlapping control design of interconnected systems with input saturation
2016, 6(2): 153-160. doi: 10.3934/naco.2016005

Solving Malfatti's high dimensional problem by global optimization

1. 

Institute for Systems Dynamics and Control Theory, SB of RAS, 664033 Irkutsk, Russian Federation, Russian Federation, Russian Federation

Received  October 2015 Revised  April 2016 Published  June 2016

We generalize Malfatti's problem which dates back to 200 years ago as a global optimization problem in a high dimensional space. The problem has been formulated as the convex maximization problem over a nonconvex set. Global optimality condition by Strekalovsky [11] has been applied to this problem. For solving numerically Malfatti's problem, we propose the algorithm in [3] which converges globally. Some computational results are provided.
Citation: Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005
References:
[1]

M. Andreatta, A. Bezdek and Jan P. Boroński., The problem of Malfatti: Two centuries of debate,, The Mathematical Intelligencer, 33 (2011), 72.  doi: 10.1007/s00283-010-9154-7.  Google Scholar

[2]

R. Enkhbat, Global optimization approach to Malfatti's problem,, Accepted for JOGO and to appear in 2016., (2016).   Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set,, Journal of Global Optimization, 8 (1996), 379.  doi: 10.1007/BF02403999.  Google Scholar

[4]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem,, Math. Mag., 41 (1967), 251.   Google Scholar

[5]

M. Goldberg, On the original Malfatti problem,, Math. Mag., 40 (1967), 241.   Google Scholar

[6]

G. A. Los, Malfatti's Optimization Problem [in Russian],, Dep. Ukr. NIINTI, (1988).   Google Scholar

[7]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle,, Proc. London Math. Soc., 2 (1930), 287.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[8]

C. Malfatti, Memoria sopra una problema stereotomico,, Memoria di Matematica e di Fisica della Societa italiana della Scienze, ().   Google Scholar

[9]

V. N. Nefedov, Finding the global maximum of a function of several variables on a set given by inequality constraints,, Journal of Numerical Mathematics and Mathematical Physics, 27 (1987), 35.   Google Scholar

[10]

T. Saaty, Integer optimization methods and related extremal problems [Russian translation],, Nauka, 10 (1803), 235.   Google Scholar

[11]

A. S. Strekalovsky, On the global extrema problem,, Soviet Math. Doklad, 292 (1987), 1062.   Google Scholar

[12]

H. Tverberg, A generalization of Radon's theorem,, Journal of the London Mathematical Society, 41 (1966), 123.   Google Scholar

[13]

V. A. Zalgaller, An inequality for acute triangles,, Ukr. Geom. Sb., 34 (1991), 10.   Google Scholar

[14]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem,, Journal of Mathematical Sciences, 72 (1994), 3163.  doi: 10.1007/BF01249514.  Google Scholar

show all references

References:
[1]

M. Andreatta, A. Bezdek and Jan P. Boroński., The problem of Malfatti: Two centuries of debate,, The Mathematical Intelligencer, 33 (2011), 72.  doi: 10.1007/s00283-010-9154-7.  Google Scholar

[2]

R. Enkhbat, Global optimization approach to Malfatti's problem,, Accepted for JOGO and to appear in 2016., (2016).   Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set,, Journal of Global Optimization, 8 (1996), 379.  doi: 10.1007/BF02403999.  Google Scholar

[4]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem,, Math. Mag., 41 (1967), 251.   Google Scholar

[5]

M. Goldberg, On the original Malfatti problem,, Math. Mag., 40 (1967), 241.   Google Scholar

[6]

G. A. Los, Malfatti's Optimization Problem [in Russian],, Dep. Ukr. NIINTI, (1988).   Google Scholar

[7]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle,, Proc. London Math. Soc., 2 (1930), 287.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[8]

C. Malfatti, Memoria sopra una problema stereotomico,, Memoria di Matematica e di Fisica della Societa italiana della Scienze, ().   Google Scholar

[9]

V. N. Nefedov, Finding the global maximum of a function of several variables on a set given by inequality constraints,, Journal of Numerical Mathematics and Mathematical Physics, 27 (1987), 35.   Google Scholar

[10]

T. Saaty, Integer optimization methods and related extremal problems [Russian translation],, Nauka, 10 (1803), 235.   Google Scholar

[11]

A. S. Strekalovsky, On the global extrema problem,, Soviet Math. Doklad, 292 (1987), 1062.   Google Scholar

[12]

H. Tverberg, A generalization of Radon's theorem,, Journal of the London Mathematical Society, 41 (1966), 123.   Google Scholar

[13]

V. A. Zalgaller, An inequality for acute triangles,, Ukr. Geom. Sb., 34 (1991), 10.   Google Scholar

[14]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem,, Journal of Mathematical Sciences, 72 (1994), 3163.  doi: 10.1007/BF01249514.  Google Scholar

[1]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[2]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[3]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[4]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[5]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[6]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140

[7]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[8]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[9]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[10]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[11]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[12]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[13]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[14]

Saeid Ansary Karbasy, Maziar Salahi. Quadratic optimization with two ball constraints. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019046

[15]

Vincent Guyonne, Luca Lorenzi. Instability in a flame ball problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 315-350. doi: 10.3934/dcdsb.2007.7.315

[16]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[17]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[18]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019089

[19]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019102

[20]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

[Back to Top]