Citation: |
[1] |
A. M. Bagirov, A. Al Nuamiat and N. Sultanova, Hyperbolic smoothing functions for nonsmooth minimization, Optimization, 62 (2013), 759-782.doi: 10.1080/02331934.2012.675335. |
[2] |
F. S. Bai, Z. Y. Wu and D. L. Zhu, Lower order calmness and exact penalty fucntion, Optimization Methods ans Software, 21 (2006), 515-525.doi: 10.1080/10556780600627693. |
[3] |
A. Ben-Tal and M. Teboule, Smoothing technique for nondifferentiable optimization problems, Lecture notes in mathematics, 1405, Springer-Verlag, Heidelberg, (1989), 1-11. |
[4] |
D. Bertsekas, Nondifferentiable optimization via approximation, Mathematical Programming Study, 3 (1975), 1-25. |
[5] |
C. Chen and O. L. Mangasarian, A Class of smoothing functions for nonlinear and mixed complementarity problem, Computational Optimization and Application, 5 (1996), 97-138.doi: 10.1007/BF00249052. |
[6] |
X. Chen, Smoothing Methods for nonsmooth, nonconvex minimzation, Mathematical Programming Serie B, 134 (2012), 71-99.doi: 10.1007/s10107-012-0569-0. |
[7] |
S. J. Lian, Smoothing approximation to l1 exact penalty for inequality constrained optimization, Applied Mathematics and Computation, 219 (2012), 3113-3121.doi: 10.1016/j.amc.2012.09.042. |
[8] |
B. Liu, On smoothing exact penalty function for nonlinear constrained optimization problem, Journal of Applied Mathematics and Computing, 30 (2009), 259-270.doi: 10.1007/s12190-008-0171-z. |
[9] |
M. C. Pinar and S. Zenios, On smoothing exact penalty functions for convex constrained optimization, SIAM Journal on Optimization, 4 (1994), 468-511.doi: 10.1137/0804027. |
[10] |
Z. Meng, C. Dang, M. Jiang and R. Shen, A smoothing objective penalty function algorithm foe inequality constrained optimization problems, Numerical Functional Analysis and Optimization, 32 (2011), 806-820.doi: 10.1080/01630563.2011.577262. |
[11] |
Z. Y. Wu, H. W. J. Lee, F. S. Bai and L. S. Zhang, Quadratic smoothing approximation to l1 exact penalty function in global optimization, Journal of Industrail and Management Optimization, 53 (2005), 533-547.doi: 10.3934/jimo.2005.1.533. |
[12] |
Z. Y. Wu, F. S. Bai, X. Q. Yang and L. S. Zhang, An exact lower orderpenalty function and its smoothing in nonlinear programming, Optimization, 53 (2004), 51-68.doi: 10.1080/02331930410001662199. |
[13] |
A. E. Xavier, The hyperbolic smoothing clustering method, Pattern Recognition, 43 (2010), 731-737. |
[14] |
A. E. Xavier,A. A. F. D. Oliveira, Optimal covering of plane domains by circles via hyperbolic smoothing, Journal of Global Optimization, 31 (2005), 493-504.doi: 10.1007/s10898-004-0737-8. |
[15] |
X. Xu, Z. Meng, J. Sun and R. Shen, A penalty function method based on smoothing lower order penalty function, Journal of Computational and Applied Mathematics, 235 (2011), 4047-4058.doi: 10.1016/j.cam.2011.02.031. |
[16] |
N. Yilmaz, A. Sahiner, A New Global Optimization Technique Based on the Smoothing Approach for Non-smooth, Non-convex Optimization, Submitted. |
[17] |
N. Yilmaz, A. Sahiner, Smoothing Approach for Non-lipschitz Optimization, Submitted. |
[18] |
I. Zang, A smooting out technique for min-max optimization, Mathematical Programming, 19 (1980), 61-77.doi: 10.1007/BF01581628. |
[19] |
W. I. Zangwill, Nonlinear programing via penalty functions, Management Science, 13 (1967), 344-358. |