\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On general form of the Tanh method and its application to nonlinear partial differential equations

Abstract Related Papers Cited by
  • The tanh method is used to compute travelling waves solutions of one-dimensional nonlinear wave and evolution equations. The technique is based on seeking travelling wave solutions in the form of a finite series in tanh. In this article, we introduce a new general form of tanh transformation and solve well-known nonlinear partial differential equations in which tanh method becomes weaker in the sense of obtaining general form of solutions.
    Mathematics Subject Classification: 35C07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Ablowitz and H. Segur, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511623998.

    [2]

    M. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-Like equations, SIAM J. Appl. Math., 50-6 (1990), 1580-1592.doi: 10.1137/0150093.

    [3]

    W. Hereman and M. Takaoka, Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. Phys. A: Math. Gen., 23 (1990), 4805-4822.

    [4]

    W. Hereman, P. P. Banerjee, A. Korpel, G. Assanto, A. V. Immerzeele and A. Meerpoel, Exact solitary wave solutions of non-linear evolution and wave equations, J. Phys. A Math. Gen., 19 (1986), 607-628.

    [5]

    W. Hereman and W. Malfliet, The tanh method: a tool to solve nonlinear partial differential equations with symbolic software, 9th World Multi-Conference on Systemics, Cybernetics and Informatics, 7 (2005), 165-168.

    [6]

    S. A. Khuri, Exact solutions for a class of nonlinear evolution equations: A unified ansatze approach, Chaos, Solitons and Fractals, 36 (2008), 1181-1188.doi: 10.1016/j.chaos.2006.09.066.

    [7]

    W. Malfliet and W. Hereman, The tanh method: II. Perturbation technique for conservative systems, Phys. Scr., 54 (1996), 569-575.doi: 10.1088/0031-8949/54/6/004.

    [8]

    W. Malfliet, The tanh method, a tool for solving certain classes of nonlinear PDEs, Mathematical Methods in the Applied Sciences, 28-17 (2005), 2031-2035.doi: 10.1002/mma.650.

    [9]

    W. Malfliet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563-568.doi: 10.1088/0031-8949/54/6/003.

    [10]

    W. Malfliet, The tanh method, a tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164 (2004), 529-541.doi: 10.1016/S0377-0427(03)00645-9.

    [11]

    J. Murray, Mathematical Biology, Springer Verlag, Berlin, 1989.doi: 10.1007/978-3-662-08539-4.

    [12]

    A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, 2nd edition, Boca Raton-London, Chapman and Hall/CRC Press, 2012.

    [13]

    N. Taghizadeh, M. Mirzazadeh and A. S. Paghaleh, The first integral method to nonlinear partial differential equations, Appl. Appl. Math.,: An International Journal (AAM), 7-1 (2012), 117-132.

    [14]

    G. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(336) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return