2016, 6(2): 183-219. doi: 10.3934/naco.2016008

Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory

1. 

University of the Bundeswehr Munich, Faculty of Informatics, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany, Germany

2. 

Middle East Technical University, Institute of Applied Mathematics, 06531 Ankara, Turkey

Received  October 2015 Revised  July 2016 Published  August 2016

Boundary value problems on large periodic networks arise in many applications such as soil mechanics in geophysics or the analysis of photonic crystals in nanotechnology. As a model example, singularly perturbed elliptic differential equations of second order are addressed. Typically, the length of periodicity is very small compared to the size of the covered region. The overall complexity of the networks raises serious problems on the computational side. The high density of the graph, the huge number of edges and vertices and highly oscillating coefficients necessitate solution schemes, where even a numerical approximation is no longer feasible. Realizing that such a system depends on two spatial scales - global scale (full domain) and local scale (microstructure) - a two-scale asymptotic analysis for network differential equations is applied. The limit process leads to a homogenized model on the full domain. The homogenized coefficients cover the micro-oscillations and the topology of the periodic network and characterize the effective behaviour. The approximate model's quality is guaranteed by error estimates. Furthermore, singularly perturbed microscopic models with a decreasing diffusion part and transport-dominant problems are discussed. The effectiveness of the two-scale limit analysis is demonstrated by numerical examples of diffusion-advection-reaction problems on large periodic grids.
Citation: Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183-219. doi: 10.3934/naco.2016008
References:
[1]

T. Arbogast, J. Douglas Jr. and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory,, SIAM Journal on Mathematical Analysis, 21 (1990), 823.  doi: 10.1137/0521046.  Google Scholar

[2]

J. L. Auriault and J. Lewandoska, Diffusion/adsorption/advection macrotransport in soils,, European Journal of Mechanics, 15 (1996), 681.   Google Scholar

[3]

J. Bear, Dynamics of Fluids in Porous Media,, Dover Publications, (1988).   Google Scholar

[4]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, American Mathematical Society, (2011).  doi: 10.1090/chel/374.  Google Scholar

[5]

G. Bouchitté and I. Fragalà, Homogenization of elastic thin structures: a measure-fattening approach,, J. Convex Anal., 9 (2002), 1.   Google Scholar

[6]

C. Boutin, A. Rallu and S. Hans, Large scale modulation of high frequency acoustic waves in periodic porous media,, The Journal of the acoustical society of America, 132 (2012), 3622.   Google Scholar

[7]

E. Canon and M. Lenczner, Modelling of thin elastic plates with small piezoelectric inclusions and sistributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate,, Journal of Elasticity, 55 (1999), 111.  doi: 10.1023/A:1007609122248.  Google Scholar

[8]

F. Civan, Porous Media Transport Phenomena,, John Wiley & Sons, (2011).   Google Scholar

[9]

M. Cunha and L. Nunes, Groundwater Characterization, Management and Monitoring,, WITPress, (2010).   Google Scholar

[10]

L. Dormieux and E. Lemarchand, Homogenization approach of advection and diffusion in cracked porous material,, Journal of Engineering Mechanics, 127 (2001), 1267.   Google Scholar

[11]

M. Espedal, A. Fasano and A. Mikelić, Filtration in porous media and industrial application,, Lecture Notes in Mathematics, 1734 (2000), 24.  doi: 10.1007/BFb0103973.  Google Scholar

[12]

P. Exner, J. P. Keating, P. Kuchment, T. Sunada and A. Teplyaev, Analysis on Graphs and Its Applications - Proceedings of Symposia in Pure Mathematics,, American Mathematical Society, 77 (2008).  doi: 10.1090/pspum/077.  Google Scholar

[13]

S. Franz and H.-G. Roos, The capriciousness of numerical methods for singular perturbations,, SIAM review, 53 (2011), 157.  doi: 10.1137/090757344.  Google Scholar

[14]

A. Fortin, J. M. Urquiza and R. Bois, A mesh adaptation method for 1D-boundary layer problems,, International Journal of Numerical Analysis and Modeling, 3 (2012), 408.   Google Scholar

[15]

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage,, Journal of the Mechanics and Physics of Solids, 53 (2005), 2259.  doi: 10.1016/j.jmps.2005.04.010.  Google Scholar

[16]

U. Hornung, Homogenization and Porous Media,, Springer, (1996).  doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[17]

J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals,, Princeton University Press, (2008).   Google Scholar

[18]

P. Kogut and G. Leugering, Asymptotic analysis of optimal control problems on periodic singular graphs,, Systems & Control: Foundations & Applications Birkhäuser Boston, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[19]

P. Kuchment, Quantum graphs I: Some basic structures,, Waves Random Media, 14 (2004), 107.  doi: 10.1088/0959-7174/14/1/014.  Google Scholar

[20]

P. Kuchment, Quantum graphs: An introduction and a brief survey,, in Analysis on Graphs and Its Applications - Proceedings of Symposia in Pure Mathematics(eds. P. Exner, 77 (2008), 291.  doi: 10.1090/pspum/077/2459876.  Google Scholar

[21]

P. Kuchment and L. Kunyansky, Differential operators on graphs and photonic crystals,, Advances in Computational Mathematics, 16 (2002), 263.  doi: 10.1023/A:1014481629504.  Google Scholar

[22]

E. Kropat, Über die Homogenisierung von Netzwerk-Differentialgleichungen,, Wissenschaftlicher Verlag Berlin, (2007).   Google Scholar

[23]

M. Lenczner, Multiscale model for atomic force microscope array mechanical behaviour,, Applied Physics Letters, 90 (2007).   Google Scholar

[24]

M. Lenczner and D. Mercier, Homogenization of periodic electrical networks including voltage to current amplifiers,, Multiscale Modeling and Simulation, 2 (2004), 359.  doi: 10.1137/S1540345903423919.  Google Scholar

[25]

M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including voltage-to-voltage amplifiers,, Mathematical Models and Methods in Applied Sciences, 9 (1999), 899.  doi: 10.1142/S0218202599000415.  Google Scholar

[26]

E. Marušić-Palokaa and S. Marušić, Computation of the permeability tensor for the fluid flow through a periodic net of thin channels,, Applicable Analysis, 64 (1997), 27.  doi: 10.1080/00036819708840521.  Google Scholar

[27]

V. G. Mazja, S. A. Nasarow and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in Singulär gestörten Gebieten II,, Wiley, (1991).   Google Scholar

[28]

C. Miehe and S. Göktepe, A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity,, Journal of the Mechanics and Physics of Solids, 53 (2005), 2231.  doi: 10.1016/j.jmps.2005.04.006.  Google Scholar

[29]

C. Miehe, S. Göktepe and F. Lulei, A micro-macro approach to rubber-like materials - Part I: the non-affine micro-sphere model of rubber elasticity,, Journal of the Mechanics and Physics of Solids, 52 (2004), 2617.  doi: 10.1016/j.jmps.2004.03.011.  Google Scholar

[30]

C. O. Ng and C. C. Mei, Homogenization theory applied to soil vapor extraction in aggregated soils,, Physics of Fluids, 8 (1996), 2298.  doi: 10.1063/1.869017.  Google Scholar

[31]

M. Vogelius, A homogenization result for planar, polygonal networks,, RAIRO Modélisation Mathématique et Analyse Numérique, 25 (1991), 483.   Google Scholar

[32]

F. Yerlikaya-Özkurta, A. Askanb and G.-W. Weber, An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method,, Engineering Optimization, 46 (2014), 1651.   Google Scholar

show all references

References:
[1]

T. Arbogast, J. Douglas Jr. and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory,, SIAM Journal on Mathematical Analysis, 21 (1990), 823.  doi: 10.1137/0521046.  Google Scholar

[2]

J. L. Auriault and J. Lewandoska, Diffusion/adsorption/advection macrotransport in soils,, European Journal of Mechanics, 15 (1996), 681.   Google Scholar

[3]

J. Bear, Dynamics of Fluids in Porous Media,, Dover Publications, (1988).   Google Scholar

[4]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, American Mathematical Society, (2011).  doi: 10.1090/chel/374.  Google Scholar

[5]

G. Bouchitté and I. Fragalà, Homogenization of elastic thin structures: a measure-fattening approach,, J. Convex Anal., 9 (2002), 1.   Google Scholar

[6]

C. Boutin, A. Rallu and S. Hans, Large scale modulation of high frequency acoustic waves in periodic porous media,, The Journal of the acoustical society of America, 132 (2012), 3622.   Google Scholar

[7]

E. Canon and M. Lenczner, Modelling of thin elastic plates with small piezoelectric inclusions and sistributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate,, Journal of Elasticity, 55 (1999), 111.  doi: 10.1023/A:1007609122248.  Google Scholar

[8]

F. Civan, Porous Media Transport Phenomena,, John Wiley & Sons, (2011).   Google Scholar

[9]

M. Cunha and L. Nunes, Groundwater Characterization, Management and Monitoring,, WITPress, (2010).   Google Scholar

[10]

L. Dormieux and E. Lemarchand, Homogenization approach of advection and diffusion in cracked porous material,, Journal of Engineering Mechanics, 127 (2001), 1267.   Google Scholar

[11]

M. Espedal, A. Fasano and A. Mikelić, Filtration in porous media and industrial application,, Lecture Notes in Mathematics, 1734 (2000), 24.  doi: 10.1007/BFb0103973.  Google Scholar

[12]

P. Exner, J. P. Keating, P. Kuchment, T. Sunada and A. Teplyaev, Analysis on Graphs and Its Applications - Proceedings of Symposia in Pure Mathematics,, American Mathematical Society, 77 (2008).  doi: 10.1090/pspum/077.  Google Scholar

[13]

S. Franz and H.-G. Roos, The capriciousness of numerical methods for singular perturbations,, SIAM review, 53 (2011), 157.  doi: 10.1137/090757344.  Google Scholar

[14]

A. Fortin, J. M. Urquiza and R. Bois, A mesh adaptation method for 1D-boundary layer problems,, International Journal of Numerical Analysis and Modeling, 3 (2012), 408.   Google Scholar

[15]

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage,, Journal of the Mechanics and Physics of Solids, 53 (2005), 2259.  doi: 10.1016/j.jmps.2005.04.010.  Google Scholar

[16]

U. Hornung, Homogenization and Porous Media,, Springer, (1996).  doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[17]

J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals,, Princeton University Press, (2008).   Google Scholar

[18]

P. Kogut and G. Leugering, Asymptotic analysis of optimal control problems on periodic singular graphs,, Systems & Control: Foundations & Applications Birkhäuser Boston, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[19]

P. Kuchment, Quantum graphs I: Some basic structures,, Waves Random Media, 14 (2004), 107.  doi: 10.1088/0959-7174/14/1/014.  Google Scholar

[20]

P. Kuchment, Quantum graphs: An introduction and a brief survey,, in Analysis on Graphs and Its Applications - Proceedings of Symposia in Pure Mathematics(eds. P. Exner, 77 (2008), 291.  doi: 10.1090/pspum/077/2459876.  Google Scholar

[21]

P. Kuchment and L. Kunyansky, Differential operators on graphs and photonic crystals,, Advances in Computational Mathematics, 16 (2002), 263.  doi: 10.1023/A:1014481629504.  Google Scholar

[22]

E. Kropat, Über die Homogenisierung von Netzwerk-Differentialgleichungen,, Wissenschaftlicher Verlag Berlin, (2007).   Google Scholar

[23]

M. Lenczner, Multiscale model for atomic force microscope array mechanical behaviour,, Applied Physics Letters, 90 (2007).   Google Scholar

[24]

M. Lenczner and D. Mercier, Homogenization of periodic electrical networks including voltage to current amplifiers,, Multiscale Modeling and Simulation, 2 (2004), 359.  doi: 10.1137/S1540345903423919.  Google Scholar

[25]

M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including voltage-to-voltage amplifiers,, Mathematical Models and Methods in Applied Sciences, 9 (1999), 899.  doi: 10.1142/S0218202599000415.  Google Scholar

[26]

E. Marušić-Palokaa and S. Marušić, Computation of the permeability tensor for the fluid flow through a periodic net of thin channels,, Applicable Analysis, 64 (1997), 27.  doi: 10.1080/00036819708840521.  Google Scholar

[27]

V. G. Mazja, S. A. Nasarow and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in Singulär gestörten Gebieten II,, Wiley, (1991).   Google Scholar

[28]

C. Miehe and S. Göktepe, A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity,, Journal of the Mechanics and Physics of Solids, 53 (2005), 2231.  doi: 10.1016/j.jmps.2005.04.006.  Google Scholar

[29]

C. Miehe, S. Göktepe and F. Lulei, A micro-macro approach to rubber-like materials - Part I: the non-affine micro-sphere model of rubber elasticity,, Journal of the Mechanics and Physics of Solids, 52 (2004), 2617.  doi: 10.1016/j.jmps.2004.03.011.  Google Scholar

[30]

C. O. Ng and C. C. Mei, Homogenization theory applied to soil vapor extraction in aggregated soils,, Physics of Fluids, 8 (1996), 2298.  doi: 10.1063/1.869017.  Google Scholar

[31]

M. Vogelius, A homogenization result for planar, polygonal networks,, RAIRO Modélisation Mathématique et Analyse Numérique, 25 (1991), 483.   Google Scholar

[32]

F. Yerlikaya-Özkurta, A. Askanb and G.-W. Weber, An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method,, Engineering Optimization, 46 (2014), 1651.   Google Scholar

[1]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[6]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

 Impact Factor: 

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (4)

[Back to Top]