2016, 6(3): 297-304. doi: 10.3934/naco.2016012

A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845

2. 

School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009

Received  March 2015 Revised  September 2016 Published  September 2016

In this paper, we consider the zero-forcing beamforming (ZFBF) under the per-antenna power constraints (PAPC). Our objective is to maximize the minimum user information rate. Traditionally, ZFBF under PAPC with a max-min performance measure can be transformed into a second order cone problem and then solved by applying the interior point method. However, it is expensive to realize this design in practice due to high computational complexity per iteration. An alternative low complexity zero-forcing beamformer design is proposed for MU-MIMO systems by applying a dual gradient method. Different from the step size rule in the literature, a backtracking line search is adopted. A numerical example is provided to show the effectiveness of the proposed method.
Citation: Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012
References:
[1]

S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization,, \emph{SIAM J. Optim.}, 10 (2000), 443.  doi: 10.1137/S1052623497328008.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Covex Optimization,, Cambrige, (2004).  doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel,, \emph{IEEE Trans. Inf. Theory.}, 49 (2003), 1691.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[4]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, \emph{Signal Process.}, 106 (2015), 10.   Google Scholar

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, \emph{IEEE International Symposium on Information Theory}, (2007), 101.   Google Scholar

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, \emph{IEEE Trans. Wireless Commun.}, 12 (2013), 228.   Google Scholar

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients,, \emph{Journal of Industrial and Management Optimization}, 12 (2016), 625.   Google Scholar

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, \emph{IEEE Commun. Lett.}, 19 (2015), 195.   Google Scholar

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, \emph{J. Glob. Optim.}, 62 (2015), 877.  doi: 10.1007/s10898-014-0237-4.  Google Scholar

[10]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, \emph{Optim. Lett.}, 8 (2014), 1829.  doi: 10.1007/s11590-013-0673-y.  Google Scholar

[11]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, \emph{IEEE Trans. Signal Process.}, 63 (2015), 4179.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia,, \emph{IEEE 75th Vehicular Technology Conference}, (2012), 1.   Google Scholar

[13]

L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems,, UCLA, (): 2013.   Google Scholar

[14]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers,, \emph{IEEE Trans. Signal Process.}, 54 (2006), 161.   Google Scholar

[15]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses,, \emph{IEEE Trans. Signal Process.}, 56 (2008), 4409.  doi: 10.1109/TSP.2008.924638.  Google Scholar

show all references

References:
[1]

S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization,, \emph{SIAM J. Optim.}, 10 (2000), 443.  doi: 10.1137/S1052623497328008.  Google Scholar

[2]

S. Boyd and L. Vandenberghe, Covex Optimization,, Cambrige, (2004).  doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel,, \emph{IEEE Trans. Inf. Theory.}, 49 (2003), 1691.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[4]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, \emph{Signal Process.}, 106 (2015), 10.   Google Scholar

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, \emph{IEEE International Symposium on Information Theory}, (2007), 101.   Google Scholar

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, \emph{IEEE Trans. Wireless Commun.}, 12 (2013), 228.   Google Scholar

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients,, \emph{Journal of Industrial and Management Optimization}, 12 (2016), 625.   Google Scholar

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, \emph{IEEE Commun. Lett.}, 19 (2015), 195.   Google Scholar

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, \emph{J. Glob. Optim.}, 62 (2015), 877.  doi: 10.1007/s10898-014-0237-4.  Google Scholar

[10]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, \emph{Optim. Lett.}, 8 (2014), 1829.  doi: 10.1007/s11590-013-0673-y.  Google Scholar

[11]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, \emph{IEEE Trans. Signal Process.}, 63 (2015), 4179.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia,, \emph{IEEE 75th Vehicular Technology Conference}, (2012), 1.   Google Scholar

[13]

L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems,, UCLA, (): 2013.   Google Scholar

[14]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers,, \emph{IEEE Trans. Signal Process.}, 54 (2006), 161.   Google Scholar

[15]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses,, \emph{IEEE Trans. Signal Process.}, 56 (2008), 4409.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[1]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[2]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[3]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[8]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[9]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[10]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[11]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[12]

Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064

[13]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[16]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[17]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[18]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[19]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[20]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]