2016, 6(3): 305-317. doi: 10.3934/naco.2016013

Development of concurrent structural decentralised discrete event system using bisimulation concept

1. 

The School of Engineering, The University of South Australia, Mawson Lakes, SA 5095, Australia

Received  April 2015 Revised  September 2016 Published  September 2016

This paper presents a concurrent structural decentralised control in the framework of supervisory control theory using bisimulation concept. It is a way to weaken the shared-event-marking condition of structural decentralised control developed by Lee and Wong [7]. The sufficient conditions to guarantee the global optimality achieved by the concurrent actions of simpler decentralised control have been presented. The developed condition becomes specification dependent, however, the other structural condition, the mutual controllability condition, is still applied on the structure of the system. Hence the computational savings are still achievable. An example is provided to illustrate the result.
Citation: Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013
References:
[1]

G. Barrett and S. Lafortune, Bisimulation, the supervisory control problems and strong model matching for finite state machines,, \emph{Discrete-Event Dynamic Systems: theory and Applications}, 8 (1998), 377. doi: 10.1023/A:1008301317459. Google Scholar

[2]

K. Cai and W. M. Wonham, Supervisor localization: A top-down approach to distributed control of discrete-event systems,, \emph{IEEE Transaction on Automatic Control}, 55 (2010), 605. doi: 10.1109/TAC.2009.2039237. Google Scholar

[3]

P. Gohari and W. M. Wonham, On the complexity of supervisory control design in the RW framework, \emph{IEEE transaction on systems, 30 (2000), 643. Google Scholar

[4]

R. C. Hill, J. R. Cury, M. H. de Queiroz, D. M. Tilbury and S. Lafortune, Multi-level hierarchical interface-based supervisory control,, \emph{Automatica}, 46 (2010), 1152. doi: 10.1016/j.automatica.2010.04.002. Google Scholar

[5]

J. Komenda and J. van Schuppen, Modular control of discrete-event systems with coalgebra, \emph{IEEE transaction Automatic Control}, 53 (2008), 447. doi: 10.1109/TAC.2007.915164. Google Scholar

[6]

P. Kozak and W. M. Wonham, Fully decentralised solutions of supervisory control problems,, \emph{IEEE Transactions on Automatic Control}, 40 (1995), 2094. doi: 10.1109/9.478331. Google Scholar

[7]

S. H. Lee and K. C. Wong, Structural decentralised control of concurrent discrete-event systems,, \emph{European Journal of Control}, 8 (2002), 477. Google Scholar

[8]

F. Lin and W. M. Wonham, Decentralised supervisory control of discrete-event systems,, \emph{Information Sciences}, 44 (1988), 199. doi: 10.1016/0020-0255(88)90002-3. Google Scholar

[9]

R. Milner, Communication and Concurrency,, Prentice Hall, (1989). Google Scholar

[10]

P. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete-event processes,, \emph{SIAM J. Control and Optimization}, 25 (1987), 206. doi: 10.1137/0325013. Google Scholar

[11]

P. J. Ramadge and W. M. Wonham, Modular supervisory control of discrete event systems,, \emph{Mathematics of Control, 1 (1988), 13. doi: 10.1007/BF02551233. Google Scholar

[12]

O. Stursberg, Hierarchical and distributed discrete event control of manufacturing Processes,, in \emph{the 17th IEEE conference on emerging technologies and factory automation} IEEE, (2012), 1. Google Scholar

[13]

Y. Sun, H. Lin and B. M. Chen, Decentralised bisimilarity control of discrete event systems,, in \emph{Proceedings of 31st Chinese control conference}, (2012), 2134. Google Scholar

[14]

Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event systems,, \emph{International Journal of Control}, 54 (1991), 1143. doi: 10.1080/00207179108934202. Google Scholar

[15]

W. M. Wonham, Notes on Control of Discrete-Event Systems,, ECE 1636F/1637S 2012-13, (1636), 2012. Google Scholar

[16]

K. C. Wong and W. M. Wonham, Hierarchical control of discrete-event systems,, \emph{Discrete Event Dynamic System}, 6 (1996), 241. Google Scholar

[17]

T. S. Yoo and S. Lafortune, A general architecture for decentralized supervisory control of discrete-event systems,, \emph{Discrete Event Dynamic System}, 12 (2002), 335. doi: 10.1023/A:1015625600613. Google Scholar

[18]

C. Zhou, R. Kumar and S. Jiang, Control of nondeterministic discrete-event systems for bisimulation equivalence,, \emph{IEEE transactions on automatic control}, 51 (2006), 754. doi: 10.1109/TAC.2006.875036. Google Scholar

[19]

C. Zhou and R. Kumar, Bisimilarity enforcement for discrete event systems using deterministic control, \emph{IEEE transactions on automatic control}, 56 (2011), 2986. doi: 10.1109/TAC.2011.2161790. Google Scholar

show all references

References:
[1]

G. Barrett and S. Lafortune, Bisimulation, the supervisory control problems and strong model matching for finite state machines,, \emph{Discrete-Event Dynamic Systems: theory and Applications}, 8 (1998), 377. doi: 10.1023/A:1008301317459. Google Scholar

[2]

K. Cai and W. M. Wonham, Supervisor localization: A top-down approach to distributed control of discrete-event systems,, \emph{IEEE Transaction on Automatic Control}, 55 (2010), 605. doi: 10.1109/TAC.2009.2039237. Google Scholar

[3]

P. Gohari and W. M. Wonham, On the complexity of supervisory control design in the RW framework, \emph{IEEE transaction on systems, 30 (2000), 643. Google Scholar

[4]

R. C. Hill, J. R. Cury, M. H. de Queiroz, D. M. Tilbury and S. Lafortune, Multi-level hierarchical interface-based supervisory control,, \emph{Automatica}, 46 (2010), 1152. doi: 10.1016/j.automatica.2010.04.002. Google Scholar

[5]

J. Komenda and J. van Schuppen, Modular control of discrete-event systems with coalgebra, \emph{IEEE transaction Automatic Control}, 53 (2008), 447. doi: 10.1109/TAC.2007.915164. Google Scholar

[6]

P. Kozak and W. M. Wonham, Fully decentralised solutions of supervisory control problems,, \emph{IEEE Transactions on Automatic Control}, 40 (1995), 2094. doi: 10.1109/9.478331. Google Scholar

[7]

S. H. Lee and K. C. Wong, Structural decentralised control of concurrent discrete-event systems,, \emph{European Journal of Control}, 8 (2002), 477. Google Scholar

[8]

F. Lin and W. M. Wonham, Decentralised supervisory control of discrete-event systems,, \emph{Information Sciences}, 44 (1988), 199. doi: 10.1016/0020-0255(88)90002-3. Google Scholar

[9]

R. Milner, Communication and Concurrency,, Prentice Hall, (1989). Google Scholar

[10]

P. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete-event processes,, \emph{SIAM J. Control and Optimization}, 25 (1987), 206. doi: 10.1137/0325013. Google Scholar

[11]

P. J. Ramadge and W. M. Wonham, Modular supervisory control of discrete event systems,, \emph{Mathematics of Control, 1 (1988), 13. doi: 10.1007/BF02551233. Google Scholar

[12]

O. Stursberg, Hierarchical and distributed discrete event control of manufacturing Processes,, in \emph{the 17th IEEE conference on emerging technologies and factory automation} IEEE, (2012), 1. Google Scholar

[13]

Y. Sun, H. Lin and B. M. Chen, Decentralised bisimilarity control of discrete event systems,, in \emph{Proceedings of 31st Chinese control conference}, (2012), 2134. Google Scholar

[14]

Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event systems,, \emph{International Journal of Control}, 54 (1991), 1143. doi: 10.1080/00207179108934202. Google Scholar

[15]

W. M. Wonham, Notes on Control of Discrete-Event Systems,, ECE 1636F/1637S 2012-13, (1636), 2012. Google Scholar

[16]

K. C. Wong and W. M. Wonham, Hierarchical control of discrete-event systems,, \emph{Discrete Event Dynamic System}, 6 (1996), 241. Google Scholar

[17]

T. S. Yoo and S. Lafortune, A general architecture for decentralized supervisory control of discrete-event systems,, \emph{Discrete Event Dynamic System}, 12 (2002), 335. doi: 10.1023/A:1015625600613. Google Scholar

[18]

C. Zhou, R. Kumar and S. Jiang, Control of nondeterministic discrete-event systems for bisimulation equivalence,, \emph{IEEE transactions on automatic control}, 51 (2006), 754. doi: 10.1109/TAC.2006.875036. Google Scholar

[19]

C. Zhou and R. Kumar, Bisimilarity enforcement for discrete event systems using deterministic control, \emph{IEEE transactions on automatic control}, 56 (2011), 2986. doi: 10.1109/TAC.2011.2161790. Google Scholar

[1]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[2]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[3]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[4]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[5]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[6]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020106

[7]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[8]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[9]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

[10]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[11]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[12]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[13]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[14]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[15]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[16]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[17]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[18]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[19]

Tudor Bînzar, Cristian Lăzureanu. A Rikitake type system with one control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1755-1776. doi: 10.3934/dcdsb.2013.18.1755

[20]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]