• Previous Article
    Partial fraction expansion based frequency weighted model reduction for discrete-time systems
  • NACO Home
  • This Issue
  • Next Article
    Development of concurrent structural decentralised discrete event system using bisimulation concept
2016, 6(3): 319-328. doi: 10.3934/naco.2016014

Decentralized gradient algorithm for solution of a linear equation

1. 

College of Engineering and Computer Science, The Australian National University, Canberra, Australia

2. 

School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, United States

3. 

Department of Electrical Engineering, Yale University, New Haven, CT, United States

4. 

Institute for Mathematics, University of Würzburg, Emil-Fischer Straße 40, 97074 Würzburg

Received  July 2015 Revised  September 2016 Published  September 2016

The paper develops a technique for solving a linear equation $Ax=b$ with a square and nonsingular matrix $A$, using a decentralized gradient algorithm. In the language of control theory, there are $n$ agents, each storing at time $t$ an $n$-vector, call it $x_i(t)$, and a graphical structure associating with each agent a vertex of a fixed, undirected and connected but otherwise arbitrary graph $\mathcal G$ with vertex set and edge set $\mathcal V$ and $\mathcal E$ respectively. We provide differential equation update laws for the $x_i$ with the property that each $x_i$ converges to the solution of the linear equation exponentially fast. The equation for $x_i$ includes additive terms weighting those $x_j$ for which vertices in $\mathcal G$ corresponding to the $i$-th and $j$-th agents are adjacent. The results are extended to the case where $A$ is not square but has full row rank, and bounds are given on the convergence rate.
Citation: Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014
References:
[1]

C. Anderson, Solving linear eqauations on parallel distributed memory architectures by extrapolation, Technical Report, Royal Institute of Technology, 1997.

[2]

O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996. doi: 10.1017/CBO9780511624100.

[3]

T. Chang, A. Nedic and A. Scaglione, Distributed constrained optimization by consensus-based primal-dual perturbation method, IEEE Transactions on Automatic Control, 59 (2014), 1524-1538. doi:  10.1109/TAC.2014.2308612.

[4]

F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.

[5]

J. C. Duchi, A. Agarwal and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Transactions on Automatic Control, 57 (2012), 592-606. doi: 10.1109/TAC.2011.2161027.

[6]

A. Edelman, Large dense numerical linear algebra in 1993: The Parallel Computing Influence, Technical Report, 1993.

[7]

U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Communications and Control Engineering, Springer, London, 1994. doi: 10.1007/978-1-4471-3467-1.

[8]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.

[9]

D. Jakovetic, J. M. F. Moura and J. Xavier, Fast distributed gradient methods, IEEE Transactions on Automatic Control, 59 (2014), 1131-1146. doi: 10.1109/TAC.2014.2298712.

[10]

S. Kar, J. M. F. Moura and K. Ramanan, Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication, IEEE Transactions on Information Theory, 58 (2012), 1-52. doi: 10.1109/TIT.2012.2191450.

[11]

K. Kurdyka, T. Mostowski and A. Parusinski, Proof of the gradient conjecture of R. Thom, Annals of Mathematics, 152 (2000), 763-792. doi: 10.2307/2661354.

[12]

S. Lojasiewicz, Sur les trajectoires du gradient dune fonction analytique, Seminari di Geometria, Universita degli Studi di Bologna, 1984, 115-117.

[13]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, 1969.

[14]

R. Mehmood and J. Crowcroft, Parallel Iterative Solution Method of Large Sparse Linear Equation Systems, Technical Report, University of Cambridge, 2005.

[15]

B. Mohar, The Laplacian spectrum of graphs, Graph Theory, Combinatorics and Applications, (1991), 871-898. doi: 10.1.1.96.2577.

[16]

S. Mou, A. S. Morse, Z. Lin, L. Wang and D. Fullmer, A distributed algorithm for efficiently solving linear equations and its applications, Systems and Control Letters, Submitted, 2015.

[17]

S. Mou and A. S. Morse, A fixed-neighbor,distributed algorithm for solving a linear algebraic equation, European Control Conference, (2013), 2269-2273.

[18]

S. Mou, J. Liu and A. S. Morse, A distributed algorithm for solving a linear algebraic equation, the 51st Annual Allerton Conference on Communication, Control and Computing, (2013), 267-274.

[19]

S. Mou, J. Liu and A. S. Morse, A distributed algorithm for solving a linear algebraic equation, IEEE Transactions on Automatic Control, 60 (2015), 5409-5414. doi: 10.1109/TAC.2015.2414771.

[20]

A. Nedic, A. Ozdaglar and P. A. Parrilo, Constrained consensus and optimization in multi-agent networks, IEEE Transactions on Automatic Control, 55 (2010), 922-938. doi: 10.1109/TAC.2010.2041686.

[21]

A. Nedic and A. Olshevsky, Distributed optimization over time-varying directed graphs, IEEE Transactions on Automatic Control, 60 (2014), 601-615. doi: 10.1109/TAC.2014.2364096.

[22]

J. J. Sylvester, On the relation between the minor determinants of linearly equivalent quadratic functions, Phylosophical Magazine, 1 (1851), 295-305. doi: 10.1080/14786445108646735.

[23]

C. Wang, K. Ren, J. Wang and Q. Wang, Harnessing the cloud for securely outsourcing large-scale systems of linear equations, IEEE Transactions on Parallel and Distributed Systems, 24 (2013), 1172-1181. doi: 10.1109/TPDS.2012.206.

show all references

References:
[1]

C. Anderson, Solving linear eqauations on parallel distributed memory architectures by extrapolation, Technical Report, Royal Institute of Technology, 1997.

[2]

O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996. doi: 10.1017/CBO9780511624100.

[3]

T. Chang, A. Nedic and A. Scaglione, Distributed constrained optimization by consensus-based primal-dual perturbation method, IEEE Transactions on Automatic Control, 59 (2014), 1524-1538. doi:  10.1109/TAC.2014.2308612.

[4]

F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.

[5]

J. C. Duchi, A. Agarwal and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Transactions on Automatic Control, 57 (2012), 592-606. doi: 10.1109/TAC.2011.2161027.

[6]

A. Edelman, Large dense numerical linear algebra in 1993: The Parallel Computing Influence, Technical Report, 1993.

[7]

U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Communications and Control Engineering, Springer, London, 1994. doi: 10.1007/978-1-4471-3467-1.

[8]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.

[9]

D. Jakovetic, J. M. F. Moura and J. Xavier, Fast distributed gradient methods, IEEE Transactions on Automatic Control, 59 (2014), 1131-1146. doi: 10.1109/TAC.2014.2298712.

[10]

S. Kar, J. M. F. Moura and K. Ramanan, Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication, IEEE Transactions on Information Theory, 58 (2012), 1-52. doi: 10.1109/TIT.2012.2191450.

[11]

K. Kurdyka, T. Mostowski and A. Parusinski, Proof of the gradient conjecture of R. Thom, Annals of Mathematics, 152 (2000), 763-792. doi: 10.2307/2661354.

[12]

S. Lojasiewicz, Sur les trajectoires du gradient dune fonction analytique, Seminari di Geometria, Universita degli Studi di Bologna, 1984, 115-117.

[13]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, 1969.

[14]

R. Mehmood and J. Crowcroft, Parallel Iterative Solution Method of Large Sparse Linear Equation Systems, Technical Report, University of Cambridge, 2005.

[15]

B. Mohar, The Laplacian spectrum of graphs, Graph Theory, Combinatorics and Applications, (1991), 871-898. doi: 10.1.1.96.2577.

[16]

S. Mou, A. S. Morse, Z. Lin, L. Wang and D. Fullmer, A distributed algorithm for efficiently solving linear equations and its applications, Systems and Control Letters, Submitted, 2015.

[17]

S. Mou and A. S. Morse, A fixed-neighbor,distributed algorithm for solving a linear algebraic equation, European Control Conference, (2013), 2269-2273.

[18]

S. Mou, J. Liu and A. S. Morse, A distributed algorithm for solving a linear algebraic equation, the 51st Annual Allerton Conference on Communication, Control and Computing, (2013), 267-274.

[19]

S. Mou, J. Liu and A. S. Morse, A distributed algorithm for solving a linear algebraic equation, IEEE Transactions on Automatic Control, 60 (2015), 5409-5414. doi: 10.1109/TAC.2015.2414771.

[20]

A. Nedic, A. Ozdaglar and P. A. Parrilo, Constrained consensus and optimization in multi-agent networks, IEEE Transactions on Automatic Control, 55 (2010), 922-938. doi: 10.1109/TAC.2010.2041686.

[21]

A. Nedic and A. Olshevsky, Distributed optimization over time-varying directed graphs, IEEE Transactions on Automatic Control, 60 (2014), 601-615. doi: 10.1109/TAC.2014.2364096.

[22]

J. J. Sylvester, On the relation between the minor determinants of linearly equivalent quadratic functions, Phylosophical Magazine, 1 (1851), 295-305. doi: 10.1080/14786445108646735.

[23]

C. Wang, K. Ren, J. Wang and Q. Wang, Harnessing the cloud for securely outsourcing large-scale systems of linear equations, IEEE Transactions on Parallel and Distributed Systems, 24 (2013), 1172-1181. doi: 10.1109/TPDS.2012.206.

[1]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[2]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055

[4]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[5]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[6]

Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270

[7]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[8]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[9]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[10]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[11]

Chuong Van Nguyen, Phuong Huu Hoang, Hyo-Sung Ahn. Distributed optimization algorithms for game of power generation in smart grid. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 327-348. doi: 10.3934/naco.2019022

[12]

Xuan Wang, Shaoshuai Mou, Shreyas Sundaram. A resilient convex combination for consensus-based distributed algorithms. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 269-281. doi: 10.3934/naco.2019018

[13]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[14]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[15]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[16]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[17]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[18]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[19]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[20]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

 Impact Factor: 

Metrics

  • PDF downloads (253)
  • HTML views (0)
  • Cited by (18)

[Back to Top]