\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial fraction expansion based frequency weighted model reduction for discrete-time systems

Abstract / Introduction Related Papers Cited by
  • In this paper, a partial fraction expansion based frequency weighted model reduction algorithm is developed for discrete-time systems. The proposed method is an extension to the method by Sreeram et al. [13] and it yields stable reduced order models with both single and double sided weighting functions. Effectiveness of the proposed algorithm is demonstrated by a numerical example.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. W. Ding, X. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters, IEEE Trans. Autom. Control, 60 (2015), 1624-1629.doi: 10.1109/TAC.2014.2359305.

    [2]

    X. Du, F. Fan, D. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems, Nonlinear Dynamics, 83 (2016), 2485-2496.doi: 10.1007/s11071-015-2496-0.

    [3]

    D. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization, In: Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, USA, (1984), 127-132.

    [4]

    M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited gramians, J. Franklin Inst., 352 (2015), 33-51.doi: 10.1016/j.jfranklin.2014.10.013.

    [5]

    X. Li, C. Yu and H. Gao, Frequency limited H model reduction for positive systems, IEEE Trans. Autom. Control, 60 (2015), 1093-1098.doi: 10.1109/TAC.2014.2352751.

    [6]

    C. A. Lin and T. Y. Chiu, Model reduction via frequency weighted balanced realization, Control Theory and Advanced Technology, 8 (1992), 341-451.

    [7]

    Y. Liu and B. D. O. Anderson, Singular perturbation approximation of balanced systems, International Journal of Control, 50 (1989), 1339-1405.doi: 10.1080/00207178908953437.

    [8]

    B. C. Moore, Principal component analysis in linear system: Controllability, observability, and model reduction, IEEE Trans. Automat. Contr, AC-26 (1981), 17-32.doi: 10.1109/TAC.1981.1102568.

    [9]

    U. M. Saggaf and G. F. Franklin, On model reduction, Proc. of the 23rd IEEE Conf. on Decision and Control, (1986), 1064-1069.

    [10]

    U. M. Saggaf and G. F. Franklin, Model reduction via balanced realization, IEEE Trans. on Autom. Control, AC-33 (1988), 687-692.doi: 10.1109/9.1280.

    [11]

    H. R. Shaker and M. Tahavori, Frequency interval model reduction of bilinear systems, IEEE Trans. Autom. Control, 59 (2014), 1948-1953.doi: 10.1109/TAC.2013.2295661.

    [12]

    V. Sreeram and B. D. O. Anderson, Frequency weighted balanced reduction technique: A generalization and an error bound, Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 3576-3581.

    [13]

    V. Sreeram, S. Sahlan, W. M. W Muda, T. Fernando and H. H. C. Iu, A generalised partial-fraction-expansion based frequency weighted balanced truncation technique, International Journal of Control, 86 (2013), 833-843.doi: 10.1080/00207179.2013.764017.

    [14]

    T. Van-Gestel, B. Anderson and P. Van-Overschee, On frequency weighted balanced truncation: Hankel singular values and error bounds, European Journal of Control, 7 (2001), 584-592.

    [15]

    G. Wang, V. Sreeram and W. Q. Liu, A new frequency-weighted balanced truncation method and an error bound, IEEE Transactions on Automatic Control, 44 (1999), 1734-1737.doi: 10.1109/9.788542.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(158) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return