2016, 6(3): 329-337. doi: 10.3934/naco.2016015

Partial fraction expansion based frequency weighted model reduction for discrete-time systems

1. 

Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004, India

2. 

School of Electrical and Electronics Engineering, University of Western Australia, 35 Stirling Highway, WA 6009, Australia, Australia

Received  July 2015 Revised  September 2016 Published  September 2016

In this paper, a partial fraction expansion based frequency weighted model reduction algorithm is developed for discrete-time systems. The proposed method is an extension to the method by Sreeram et al. [13] and it yields stable reduced order models with both single and double sided weighting functions. Effectiveness of the proposed algorithm is demonstrated by a numerical example.
Citation: Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015
References:
[1]

D. W. Ding, X. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters,, IEEE Trans. Autom. Control, 60 (2015), 1624.  doi: 10.1109/TAC.2014.2359305.  Google Scholar

[2]

X. Du, F. Fan, D. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems,, Nonlinear Dynamics, 83 (2016), 2485.  doi: 10.1007/s11071-015-2496-0.  Google Scholar

[3]

D. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization,, In: Proceedings of the 23rd IEEE Conference on Decision and Control, (1984), 127.   Google Scholar

[4]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited gramians,, J. Franklin Inst., 352 (2015), 33.  doi: 10.1016/j.jfranklin.2014.10.013.  Google Scholar

[5]

X. Li, C. Yu and H. Gao, Frequency limited H model reduction for positive systems,, IEEE Trans. Autom. Control, 60 (2015), 1093.  doi: 10.1109/TAC.2014.2352751.  Google Scholar

[6]

C. A. Lin and T. Y. Chiu, Model reduction via frequency weighted balanced realization,, Control Theory and Advanced Technology, 8 (1992), 341.   Google Scholar

[7]

Y. Liu and B. D. O. Anderson, Singular perturbation approximation of balanced systems,, International Journal of Control, 50 (1989), 1339.  doi: 10.1080/00207178908953437.  Google Scholar

[8]

B. C. Moore, Principal component analysis in linear system: Controllability, observability, and model reduction,, IEEE Trans. Automat. Contr, AC-26 (1981), 17.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[9]

U. M. Saggaf and G. F. Franklin, On model reduction,, Proc. of the 23rd IEEE Conf. on Decision and Control, (1986), 1064.   Google Scholar

[10]

U. M. Saggaf and G. F. Franklin, Model reduction via balanced realization,, IEEE Trans. on Autom. Control, AC-33 (1988), 687.  doi: 10.1109/9.1280.  Google Scholar

[11]

H. R. Shaker and M. Tahavori, Frequency interval model reduction of bilinear systems,, IEEE Trans. Autom. Control, 59 (2014), 1948.  doi: 10.1109/TAC.2013.2295661.  Google Scholar

[12]

V. Sreeram and B. D. O. Anderson, Frequency weighted balanced reduction technique: A generalization and an error bound,, Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 3576.   Google Scholar

[13]

V. Sreeram, S. Sahlan, W. M. W Muda, T. Fernando and H. H. C. Iu, A generalised partial-fraction-expansion based frequency weighted balanced truncation technique,, International Journal of Control, 86 (2013), 833.  doi: 10.1080/00207179.2013.764017.  Google Scholar

[14]

T. Van-Gestel, B. Anderson and P. Van-Overschee, On frequency weighted balanced truncation: Hankel singular values and error bounds,, European Journal of Control, 7 (2001), 584.   Google Scholar

[15]

G. Wang, V. Sreeram and W. Q. Liu, A new frequency-weighted balanced truncation method and an error bound,, IEEE Transactions on Automatic Control, 44 (1999), 1734.  doi: 10.1109/9.788542.  Google Scholar

show all references

References:
[1]

D. W. Ding, X. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters,, IEEE Trans. Autom. Control, 60 (2015), 1624.  doi: 10.1109/TAC.2014.2359305.  Google Scholar

[2]

X. Du, F. Fan, D. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems,, Nonlinear Dynamics, 83 (2016), 2485.  doi: 10.1007/s11071-015-2496-0.  Google Scholar

[3]

D. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization,, In: Proceedings of the 23rd IEEE Conference on Decision and Control, (1984), 127.   Google Scholar

[4]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited gramians,, J. Franklin Inst., 352 (2015), 33.  doi: 10.1016/j.jfranklin.2014.10.013.  Google Scholar

[5]

X. Li, C. Yu and H. Gao, Frequency limited H model reduction for positive systems,, IEEE Trans. Autom. Control, 60 (2015), 1093.  doi: 10.1109/TAC.2014.2352751.  Google Scholar

[6]

C. A. Lin and T. Y. Chiu, Model reduction via frequency weighted balanced realization,, Control Theory and Advanced Technology, 8 (1992), 341.   Google Scholar

[7]

Y. Liu and B. D. O. Anderson, Singular perturbation approximation of balanced systems,, International Journal of Control, 50 (1989), 1339.  doi: 10.1080/00207178908953437.  Google Scholar

[8]

B. C. Moore, Principal component analysis in linear system: Controllability, observability, and model reduction,, IEEE Trans. Automat. Contr, AC-26 (1981), 17.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[9]

U. M. Saggaf and G. F. Franklin, On model reduction,, Proc. of the 23rd IEEE Conf. on Decision and Control, (1986), 1064.   Google Scholar

[10]

U. M. Saggaf and G. F. Franklin, Model reduction via balanced realization,, IEEE Trans. on Autom. Control, AC-33 (1988), 687.  doi: 10.1109/9.1280.  Google Scholar

[11]

H. R. Shaker and M. Tahavori, Frequency interval model reduction of bilinear systems,, IEEE Trans. Autom. Control, 59 (2014), 1948.  doi: 10.1109/TAC.2013.2295661.  Google Scholar

[12]

V. Sreeram and B. D. O. Anderson, Frequency weighted balanced reduction technique: A generalization and an error bound,, Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 3576.   Google Scholar

[13]

V. Sreeram, S. Sahlan, W. M. W Muda, T. Fernando and H. H. C. Iu, A generalised partial-fraction-expansion based frequency weighted balanced truncation technique,, International Journal of Control, 86 (2013), 833.  doi: 10.1080/00207179.2013.764017.  Google Scholar

[14]

T. Van-Gestel, B. Anderson and P. Van-Overschee, On frequency weighted balanced truncation: Hankel singular values and error bounds,, European Journal of Control, 7 (2001), 584.   Google Scholar

[15]

G. Wang, V. Sreeram and W. Q. Liu, A new frequency-weighted balanced truncation method and an error bound,, IEEE Transactions on Automatic Control, 44 (1999), 1734.  doi: 10.1109/9.788542.  Google Scholar

[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

 Impact Factor: 

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

[Back to Top]