Citation: |
[1] |
B. Açikmeşe and L. Blackmore, Lossless convexification of a class of nonconvex optimal control problems for linear systems, In Proceedings of the 2010 American control conference, Baltimore, USA, 2010. |
[2] |
B. Açikmeşe and L. Blackmore, Lossless convexification of a class of optimal control problems with non-convex control constraints, Automatica, 47 (2011), 341-347.doi: 10.1016/j.automatica.2010.10.037. |
[3] |
N. U. Ahmed, Elements of Finite-Dimensional Systems and Control Theory, Essex: Longman Scientific and Technical, 1988. |
[4] |
N. U. Ahmed, Dynamic Systems and Control with Applications, Singapore: World Scientific, 2006.doi: 10.1142/6262. |
[5] |
J. M. Blatt, Optimal control with a cost of switching control, Journal of the Australian Mathematical Society-Series B: Applied Mathematics, 19 (1976), 316-332. |
[6] |
N. Banihashemi and C. Y. Kaya, Inexact restoration and adaptive mesh refinement for optimal control, Journal of Industrial and Management Optimization, 10 (2014), 521-542.doi: 10.3934/jimo.2014.10.521. |
[7] |
C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis, and real-time control, Journal of Computational and Applied Mathematics, 120 (2000), 85-108.doi: 10.1016/S0377-0427(00)00305-8. |
[8] |
W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu and Y. H. Shi, A novel set-based particle swarm optimization method for discrete optimization problems, IEEE Transactions on Evolutionary Computation, 14 (2010), 278-300. |
[9] |
M. Gerdts, Global convergence of a non-smooth Newton method for control-state constrained optimal control problems, SIAM Journal on Optimization, 19 (2008), 326-350.doi: 10.1137/060657546. |
[10] |
M. Gerdts and M. Kunkel, A non-smooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.doi: 10.3934/jimo.2008.4.247. |
[11] |
R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.doi: 10.1137/1037043. |
[12] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3 Optimal Control Software: Theory and User Manual, version 3. University of Western Australia, 2004. |
[13] |
L. S. Jennings and K. L. Teo, A numerical algorithm for constrained optimal control problems with applications to harvesting, in "Dynamics of Complex Interconnected Biological Systems", Birkhauser Boston, Boston, (1990), 218-234.doi: 10.1007/978-1-4684-6784-0_12. |
[14] |
C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.doi: 10.1007/s10957-012-0006-9. |
[15] |
C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control, Journal of Optimization Theory and Applications, 117 (2003), 69-92.doi: 10.1023/A:1023600422807. |
[16] |
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-262. |
[17] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81. |
[18] |
B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.doi: 10.1016/j.amc.2013.08.092. |
[19] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: a survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.doi: 10.3934/jimo.2014.10.275. |
[20] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: new convergence results. Numerical Algebra, Control and Optimization, 2 (2012), 571-599.doi: 10.3934/naco.2012.2.571. |
[21] |
R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.doi: 10.1016/j.automatica.2008.04.011. |
[22] |
R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029. |
[23] |
D. G. Luenberger and Y. Y. Ye, Linear and Nonlinear Programming, (3rd ed.). New York: Springer, 2008. |
[24] |
J. Matula, On an extremum problem, Journal of the Australian Mathematical Society-Series B: Applied Mathematics, 28 (1987), 376-392.doi: 10.1017/S0334270000005464. |
[25] |
J. Nocedal and S. J. Wright, Numerical Optimization, (2nd ed.). New York: Springer, 2006. |
[26] |
H. L. Royden and P. M. Fitzpatrick, Real analysis, (4th ed.). Boston: Prentice Hall, 2010. |
[27] |
Y. Sakawa and Y. Shindo, Optimal control of container cranes, Automatica, 18 (1982), 257-266. |
[28] |
K. Schittkowski, NLPQLP: a fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search, version 2.24. University of Bayreuth, 2007. |
[29] |
D. E. Stewart, A numerical algorithm for optimal control problems with switching costs, Journal of the Australian Mathematical Society-Series B: Applied Mathematics, 34 (1992), 212-228.doi: 10.1017/S0334270000008730. |
[30] |
K. L. Teo and C. J. Goh, On constrained optimization problems with non-smooth cost functions, Applied Mathematics and Optimization, 17 (1988), 181-190.doi: 10.1007/BF01443621. |
[31] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Essex: Longman Scientific and Technical, 1991. |
[32] |
K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 335-357.doi: 10.1007/BF00941572. |
[33] |
R. J. Vanderbei, Case studies in trajectory optimization: trains, planes, and other pastimes, Optimization and Engineering, 2 (2001), 215-243.doi: 10.1023/A:1013145328012. |
[34] |
T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems, New York: John Wiley, 1981. |
[35] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718.doi: 10.3934/jimo.2009.5.705. |
[36] |
Z. Y. Wu, F. S. Bai, H. W. J. Lee and Y. J. Yang, A filled function method for constrained global optimization, Journal of Global Optimization, 39 (2007), 495-507.doi: 10.1007/s10898-007-9152-2. |
[37] |
X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.doi: 10.1109/TAC.2003.821417. |
[38] |
C. J. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.doi: 10.1007/s10898-012-9858-7. |
[39] |
C. J. Yu, K. L. Teo , L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910,doi: 10.3934/jimo.2010.6.895. |
[40] |
C. J. Yu, K. L. Teo and T. T. Tiow, Optimal control with a cost of changing control, Australian Control Conference (AUCC), (2013), 20-25. |
[41] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.doi: 10.3934/jimo.2012.8.485. |
[42] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li , C. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, doi:10.3934/jimo.2016.12.781, 2016doi: 10.3934/jimo.2016.12.781. |
[43] |
Y. Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693. |