2016, 6(4): 413-435. doi: 10.3934/naco.2016018

A POD projection method for large-scale algebraic Riccati equations

1. 

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,Cambridge, MA 02139, United States

2. 

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409-0020, United States

Received  February 2016 Revised  September 2016 Published  December 2016

The solution of large-scale matrix algebraic Riccati equations is important for instance in control design and model reduction and remains an active area of research. We consider a class of matrix algebraic Riccati equations (AREs) arising from a linear system along with a weighted inner product. This problem class often arises from a spatial discretization of a partial differential equation system. We propose a projection method to obtain low rank solutions of AREs based on simulations of linear systems coupled with proper orthogonal decomposition. The method can take advantage of existing (black box) simulation code to generate the projection matrices. We also develop new weighted norm residual computations and error bounds. We present numerical results demonstrating that the proposed approach can produce highly accurate approximate solutions. We also briefly discuss making the proposed approach completely data-based so that one can use existing simulation codes without accessing system matrices.
Citation: Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018
References:
[1]

in 5th AIAA Flow Control Conference, (2010), 1-14. Google Scholar

[2]

Numerical Linear Algebra with Applications, 19 (2012), 700-727. doi: 10.1002/nla.799.  Google Scholar

[3]

Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005. doi: 10.1137/1.9780898718713.  Google Scholar

[4]

Proceedings of the IEEE, 72 (1984), 1746-1754. Google Scholar

[5]

International Journal of Applied Mathematics and Computer Science, 11 (2001), 1311-1330.  Google Scholar

[6]

Math. Comput. Modelling, 33 (2001), 1-19. doi: 10.1016/S0895-7177(00)00225-9.  Google Scholar

[7]

SIAM J. Matrix Anal. Appl., 36 (2015), 656-668. doi: 10.1137/140993867.  Google Scholar

[8]

SIAM J. Appl. Math., 62 (2002), 1251-1280. doi: 10.1137/S0036139901383280.  Google Scholar

[9]

IEEE Trans. Automat. Control, 45 (2000), 1312-1324. doi: 10.1109/9.867024.  Google Scholar

[10]

SIAM J. Control Optim., 29 (1991), 499-515. doi: 10.1137/0329029.  Google Scholar

[11]

in Proceedings of the 45th IEEE Conference on Decision and Control, 2006. Google Scholar

[12]

in 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations, (2014), 257-262. Google Scholar

[13]

Numer. Linear Algebra Appl., 15 (2008), 755-777. doi: 10.1002/nla.622.  Google Scholar

[14]

Preprint SPP1253-090, DFG Priority Programme 1253 Optimization with Partial Differential Equations, 2010, http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf. Google Scholar

[15]

GAMM-Mitteilungen, 36 (2013), 32-52. doi: 10.1002/gamm.201310003.  Google Scholar

[16]

Linear Algebra and its Applications, 488 (2016), 430-459. doi: 10.1016/j.laa.2015.09.027.  Google Scholar

[17]

Numer. Algebra Control Optim., 6 (2016), 1-20. doi: 10.3934/naco.2016.6.1.  Google Scholar

[18]

Fundamentals of algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2012.  Google Scholar

[19]

in Proceedings of the 47th IEEE Conference on Decision and Control, (2008), 3983-3988. Google Scholar

[20]

Math. Comput. Modelling, 33 (2001), 89-100. Computation and Control, VI (Bozeman, MT, 1998). doi: 10.1016/S0895-7177(00)00231-4.  Google Scholar

[21]

SIAM J. Control Optim., 47 (2008), 2663-2692. doi: 10.1137/060653962.  Google Scholar

[22]

in Proceedings of the 23rd IEEE Conference on Decision and Control., 23 (1984), 262-267. Google Scholar

[23]

CRC Press, Boca Raton, FL, 2014.  Google Scholar

[24]

Phys. Fluids, 31 (1988), 2573-2582. Google Scholar

[25]

in Proceedings of the 48th IEEE Conference on Decision and Control, IEEE, (2009), 4316-4321. Google Scholar

[26]

in Proceedings of the American Control Conference, (2014), 4044-4049. Google Scholar

[27]

J. Fluid Mech., 681 (2011), 241-260. doi: 10.1017/jfm.2011.195.  Google Scholar

[28]

Smart Materials and Structures, 22 (2013), 035001. Google Scholar

[29]

Int. J. Numer. Anal. Model., 7 (2010), 356-372.  Google Scholar

[30]

SIAM Journal on Matrix Analysis and Applications, 19 (1998), 755-771. doi: 10.1137/S0895479895292400.  Google Scholar

[31]

Math. Comput. Modelling, 34 (2001), 91-107. doi: 10.1016/S0895-7177(01)00051-6.  Google Scholar

[32]

SIAM J. Control Optim., 29 (1991), 1-37. doi: 10.1137/0329001.  Google Scholar

[33]

Numer. Math., 101 (2005), 87-100. doi: 10.1007/s00211-005-0615-4.  Google Scholar

[34]

G. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins University, ().   Google Scholar

[35]

J. Fluid Mech., 629 (2009), 41-72. doi: 10.1017/S0022112009006363.  Google Scholar

[36]

Electron. Trans. Numer. Anal., 33 (2009), 53-62.  Google Scholar

[37]

2nd edition, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 2012. doi: 10.1017/CBO9780511919701.  Google Scholar

[38]

SIAM J. Numer. Anal., 31 (1994), 227-251. doi: 10.1137/0731012.  Google Scholar

[39]

Numerical Algorithms, 34 (2003), 339-353. doi: 10.1023/B:NUMA.0000005349.18793.28.  Google Scholar

[40]

Applied Mathematics Letters, 19 (2006), 437-444. doi: 10.1016/j.aml.2005.07.001.  Google Scholar

[41]

Linear Algebra and its Applications, Special Issue on Order Reduction of Large-Scale Systems, 415 (2006), 344-358. doi: 10.1016/j.laa.2004.11.004.  Google Scholar

[42]

in Proceedings of the 1972 IEEE Conference on Decision and Control and 11th Symposium on Adaptive Processes., vol. 11, (1972), 219-223. Google Scholar

[43]

IEEE Trans. Automat. Control, 58 (2013), 2522-2535. doi: 10.1109/TAC.2013.2266870.  Google Scholar

[44]

Mathematics of Control, Signals and Systems, 3 (1990), 211-224. doi: 10.1007/BF02551369.  Google Scholar

[45]

in Proceedings of the 19th IFAC World Congress, (2014), 7767-7772. Google Scholar

[46]

SIAM Journal on Numerical analysis, 40 (2002), 492-515. doi: 10.1137/S0036142900382612.  Google Scholar

[47]

Wiley-Interscience, New York, 1972.  Google Scholar

[48]

J. Comput. Appl. Math., 173 (2005), 1-19. doi: 10.1016/j.cam.2004.02.021.  Google Scholar

[49]

J. Comput. Appl. Math., 237 (2013), 373-383. doi: 10.1016/j.cam.2012.06.006.  Google Scholar

[50]

Numerical Linear Algebra with Applications, 22 (2015), 26-47. doi: 10.1002/nla.1936.  Google Scholar

[51]

SIAM Journal on Control, 12 (1974), 736-746.  Google Scholar

[52]

in In Proceedings of the European Control Conference, (2015), 1183-1188. Google Scholar

[53]

International Journal for Numerical Methods in Engineering, 2016. Google Scholar

[54]

Comput. Methods Appl. Mech. Engrg., 291 (2015), 21-41. doi: 10.1016/j.cma.2015.03.018.  Google Scholar

[55]

in Seventh IUTAM Symposium on Laminar-Turbulent Transition, Springer Netherlands, (2010), 325-330. Google Scholar

[56]

International Journal of Bifurcation and Chaos, 15 (2005), 997-1013. doi: 10.1142/S0218127405012429.  Google Scholar

[57]

BIT, 52 (2012), 1035-1058. doi: 10.1007/s10543-012-0398-9.  Google Scholar

[58]

in Signal Processing, Scattering and Operator Theory, and Numerical Methods (Amsterdam, 1989), vol. 5 of Progr. Systems Control Theory, Birkhäuser Boston, Boston, MA, (1990), 503-511.  Google Scholar

[59]

Journal of Fluid Mechanics, 731 (2013), 394-417. doi: 10.1017/jfm.2013.352.  Google Scholar

[60]

SIAM J. Sci. Comput, 29 (2007), 1268-1288. doi: 10.1137/06066120X.  Google Scholar

[61]

IMA J. Numer. Anal., 34 (2014), 904-920. doi: 10.1093/imanum/drt015.  Google Scholar

[62]

Numer. Math., 121 (2012), 127-164. doi: 10.1007/s00211-011-0424-x.  Google Scholar

[63]

Comp. Opt. and Appl., 53 (2012), 227-248. doi: 10.1007/s10589-011-9451-x.  Google Scholar

[64]

IMA Journal of Numerical Analysis, 31 (2011), 1468-1496. doi: 10.1093/imanum/drq028.  Google Scholar

[65]

Quart. Appl. Math., 45 (1987), 561-571.  Google Scholar

[66]

Numerische Mathematik, 76 (1997), 249-263. doi: 10.1007/s002110050262.  Google Scholar

[67]

Princeton University Press, Princeton, NJ, 2005.  Google Scholar

[68]

in Proc. 24th Midwest Symp. Circ. Syst., Albuquerque, NM, USA, (1981), 365-369. Google Scholar

[69]

Lecture Notes, University of Konstanz, 2013, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php. Google Scholar

[70]

Lecture Notes, University of Konstanz, 2013, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php. Google Scholar

[71]

PhD thesis, Virginia Polytechnic Institute and State University, 2004, https://vtechworks.lib.vt.edu/handle/10919/27404.  Google Scholar

[72]

Numer. Algebra Control Optim., 3 (2013), 491-518. doi: 10.3934/naco.2013.3.491.  Google Scholar

[73]

J. Comput. Appl. Math., 260 (2014), 364-374. doi: 10.1016/j.cam.2013.09.074.  Google Scholar

[74]

AIAA Journal, 40 (2015), 2323-2330. Google Scholar

show all references

References:
[1]

in 5th AIAA Flow Control Conference, (2010), 1-14. Google Scholar

[2]

Numerical Linear Algebra with Applications, 19 (2012), 700-727. doi: 10.1002/nla.799.  Google Scholar

[3]

Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005. doi: 10.1137/1.9780898718713.  Google Scholar

[4]

Proceedings of the IEEE, 72 (1984), 1746-1754. Google Scholar

[5]

International Journal of Applied Mathematics and Computer Science, 11 (2001), 1311-1330.  Google Scholar

[6]

Math. Comput. Modelling, 33 (2001), 1-19. doi: 10.1016/S0895-7177(00)00225-9.  Google Scholar

[7]

SIAM J. Matrix Anal. Appl., 36 (2015), 656-668. doi: 10.1137/140993867.  Google Scholar

[8]

SIAM J. Appl. Math., 62 (2002), 1251-1280. doi: 10.1137/S0036139901383280.  Google Scholar

[9]

IEEE Trans. Automat. Control, 45 (2000), 1312-1324. doi: 10.1109/9.867024.  Google Scholar

[10]

SIAM J. Control Optim., 29 (1991), 499-515. doi: 10.1137/0329029.  Google Scholar

[11]

in Proceedings of the 45th IEEE Conference on Decision and Control, 2006. Google Scholar

[12]

in 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations, (2014), 257-262. Google Scholar

[13]

Numer. Linear Algebra Appl., 15 (2008), 755-777. doi: 10.1002/nla.622.  Google Scholar

[14]

Preprint SPP1253-090, DFG Priority Programme 1253 Optimization with Partial Differential Equations, 2010, http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf. Google Scholar

[15]

GAMM-Mitteilungen, 36 (2013), 32-52. doi: 10.1002/gamm.201310003.  Google Scholar

[16]

Linear Algebra and its Applications, 488 (2016), 430-459. doi: 10.1016/j.laa.2015.09.027.  Google Scholar

[17]

Numer. Algebra Control Optim., 6 (2016), 1-20. doi: 10.3934/naco.2016.6.1.  Google Scholar

[18]

Fundamentals of algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2012.  Google Scholar

[19]

in Proceedings of the 47th IEEE Conference on Decision and Control, (2008), 3983-3988. Google Scholar

[20]

Math. Comput. Modelling, 33 (2001), 89-100. Computation and Control, VI (Bozeman, MT, 1998). doi: 10.1016/S0895-7177(00)00231-4.  Google Scholar

[21]

SIAM J. Control Optim., 47 (2008), 2663-2692. doi: 10.1137/060653962.  Google Scholar

[22]

in Proceedings of the 23rd IEEE Conference on Decision and Control., 23 (1984), 262-267. Google Scholar

[23]

CRC Press, Boca Raton, FL, 2014.  Google Scholar

[24]

Phys. Fluids, 31 (1988), 2573-2582. Google Scholar

[25]

in Proceedings of the 48th IEEE Conference on Decision and Control, IEEE, (2009), 4316-4321. Google Scholar

[26]

in Proceedings of the American Control Conference, (2014), 4044-4049. Google Scholar

[27]

J. Fluid Mech., 681 (2011), 241-260. doi: 10.1017/jfm.2011.195.  Google Scholar

[28]

Smart Materials and Structures, 22 (2013), 035001. Google Scholar

[29]

Int. J. Numer. Anal. Model., 7 (2010), 356-372.  Google Scholar

[30]

SIAM Journal on Matrix Analysis and Applications, 19 (1998), 755-771. doi: 10.1137/S0895479895292400.  Google Scholar

[31]

Math. Comput. Modelling, 34 (2001), 91-107. doi: 10.1016/S0895-7177(01)00051-6.  Google Scholar

[32]

SIAM J. Control Optim., 29 (1991), 1-37. doi: 10.1137/0329001.  Google Scholar

[33]

Numer. Math., 101 (2005), 87-100. doi: 10.1007/s00211-005-0615-4.  Google Scholar

[34]

G. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins University, ().   Google Scholar

[35]

J. Fluid Mech., 629 (2009), 41-72. doi: 10.1017/S0022112009006363.  Google Scholar

[36]

Electron. Trans. Numer. Anal., 33 (2009), 53-62.  Google Scholar

[37]

2nd edition, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 2012. doi: 10.1017/CBO9780511919701.  Google Scholar

[38]

SIAM J. Numer. Anal., 31 (1994), 227-251. doi: 10.1137/0731012.  Google Scholar

[39]

Numerical Algorithms, 34 (2003), 339-353. doi: 10.1023/B:NUMA.0000005349.18793.28.  Google Scholar

[40]

Applied Mathematics Letters, 19 (2006), 437-444. doi: 10.1016/j.aml.2005.07.001.  Google Scholar

[41]

Linear Algebra and its Applications, Special Issue on Order Reduction of Large-Scale Systems, 415 (2006), 344-358. doi: 10.1016/j.laa.2004.11.004.  Google Scholar

[42]

in Proceedings of the 1972 IEEE Conference on Decision and Control and 11th Symposium on Adaptive Processes., vol. 11, (1972), 219-223. Google Scholar

[43]

IEEE Trans. Automat. Control, 58 (2013), 2522-2535. doi: 10.1109/TAC.2013.2266870.  Google Scholar

[44]

Mathematics of Control, Signals and Systems, 3 (1990), 211-224. doi: 10.1007/BF02551369.  Google Scholar

[45]

in Proceedings of the 19th IFAC World Congress, (2014), 7767-7772. Google Scholar

[46]

SIAM Journal on Numerical analysis, 40 (2002), 492-515. doi: 10.1137/S0036142900382612.  Google Scholar

[47]

Wiley-Interscience, New York, 1972.  Google Scholar

[48]

J. Comput. Appl. Math., 173 (2005), 1-19. doi: 10.1016/j.cam.2004.02.021.  Google Scholar

[49]

J. Comput. Appl. Math., 237 (2013), 373-383. doi: 10.1016/j.cam.2012.06.006.  Google Scholar

[50]

Numerical Linear Algebra with Applications, 22 (2015), 26-47. doi: 10.1002/nla.1936.  Google Scholar

[51]

SIAM Journal on Control, 12 (1974), 736-746.  Google Scholar

[52]

in In Proceedings of the European Control Conference, (2015), 1183-1188. Google Scholar

[53]

International Journal for Numerical Methods in Engineering, 2016. Google Scholar

[54]

Comput. Methods Appl. Mech. Engrg., 291 (2015), 21-41. doi: 10.1016/j.cma.2015.03.018.  Google Scholar

[55]

in Seventh IUTAM Symposium on Laminar-Turbulent Transition, Springer Netherlands, (2010), 325-330. Google Scholar

[56]

International Journal of Bifurcation and Chaos, 15 (2005), 997-1013. doi: 10.1142/S0218127405012429.  Google Scholar

[57]

BIT, 52 (2012), 1035-1058. doi: 10.1007/s10543-012-0398-9.  Google Scholar

[58]

in Signal Processing, Scattering and Operator Theory, and Numerical Methods (Amsterdam, 1989), vol. 5 of Progr. Systems Control Theory, Birkhäuser Boston, Boston, MA, (1990), 503-511.  Google Scholar

[59]

Journal of Fluid Mechanics, 731 (2013), 394-417. doi: 10.1017/jfm.2013.352.  Google Scholar

[60]

SIAM J. Sci. Comput, 29 (2007), 1268-1288. doi: 10.1137/06066120X.  Google Scholar

[61]

IMA J. Numer. Anal., 34 (2014), 904-920. doi: 10.1093/imanum/drt015.  Google Scholar

[62]

Numer. Math., 121 (2012), 127-164. doi: 10.1007/s00211-011-0424-x.  Google Scholar

[63]

Comp. Opt. and Appl., 53 (2012), 227-248. doi: 10.1007/s10589-011-9451-x.  Google Scholar

[64]

IMA Journal of Numerical Analysis, 31 (2011), 1468-1496. doi: 10.1093/imanum/drq028.  Google Scholar

[65]

Quart. Appl. Math., 45 (1987), 561-571.  Google Scholar

[66]

Numerische Mathematik, 76 (1997), 249-263. doi: 10.1007/s002110050262.  Google Scholar

[67]

Princeton University Press, Princeton, NJ, 2005.  Google Scholar

[68]

in Proc. 24th Midwest Symp. Circ. Syst., Albuquerque, NM, USA, (1981), 365-369. Google Scholar

[69]

Lecture Notes, University of Konstanz, 2013, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php. Google Scholar

[70]

Lecture Notes, University of Konstanz, 2013, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php. Google Scholar

[71]

PhD thesis, Virginia Polytechnic Institute and State University, 2004, https://vtechworks.lib.vt.edu/handle/10919/27404.  Google Scholar

[72]

Numer. Algebra Control Optim., 3 (2013), 491-518. doi: 10.3934/naco.2013.3.491.  Google Scholar

[73]

J. Comput. Appl. Math., 260 (2014), 364-374. doi: 10.1016/j.cam.2013.09.074.  Google Scholar

[74]

AIAA Journal, 40 (2015), 2323-2330. Google Scholar

[1]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[2]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[3]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[4]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[5]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[7]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[8]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[9]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[10]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[11]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[12]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[13]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[14]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[15]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[16]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[17]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[18]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[19]

Nadezhda Maltugueva, Nikolay Pogodaev. Modeling of crowds in regions with moving obstacles. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021066

[20]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

 Impact Factor: 

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]