Citation: |
[1] |
R. Altmann and J. Heiland, Simulation of multibody systems with servo constraints through optimal control, Oberwolfach Preprint OWP 2015-18, 2015. |
[2] |
J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comp. Meth. Appl. Mech. Eng., 1 (1972), 1-16. |
[3] |
J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming, 2nd ed., Philadelphia, SIAM, 2010.doi: 10.1137/1.9780898718577. |
[4] |
J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon, SIAM J. Appl. Dyn. Syst., 2 (2003), 144-170.doi: 10.1137/S1111111102409080. |
[5] |
J. T. Betts, S. L. Campbell and A. Engelsone, Direct transcription solution of optimal control problems with higher order state constraints: theory vs practice, Optim. Eng., 8 (2007), 1-19.doi: 10.1007/s11081-007-9000-8. |
[6] |
H. G. Bock, M. M. Diehl, D. B. Leineweber and J. P. Schlöder, A direct multiple shooting method for real-time optimization of nonlinear DAE processes, Nonlinear model predictive control (Ascona, 1998), Progr. Systems Control Theory, 26, Birkhöuser, Basel, (2000), 245-267. |
[7] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996. |
[8] |
C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real time control, J. Comp. Appl. Math., 120 (2000), 85-108.doi: 10.1016/S0377-0427(00)00305-8. |
[9] |
S. L. Campbell and J. T. Betts, Comments on direct transcription solution of constrained optimal control problems with two discretization approaches, Numerical Algorithms, 73 (2016), 807-838.doi: 10.1007/s11075-016-0119-6. |
[10] |
S. L. Campbell and R. März, Direct transcription solution of high index optimal control problems and regular Euler-Lagrange equations, J. Comp. Appl. Math., 202 (2007), 186-202.doi: 10.1016/j.cam.2006.02.024. |
[11] |
S. L. Campbell, P. Kunkel and V. Mehrmann, Regularization of linear and nonlinear descriptor systems, in Control and Optimization with Differential-Algebraic Constraints(eds. L. T. Biegler, S. L. Campbell and V. Mehrmann) SIAM, Philadelphia, (2012), 17-34.doi: 10.1137/9781611972252.ch2. |
[12] |
C. L. Darby, W. W. Hager and A. V. Rao, An hp-adaptive pseudospectral method for solving optimal control problems, Optimal Control Applications and Methods, 32 (2011), 476-502.doi: 10.1002/oca.957. |
[13] |
A. L. Dontchev and W. W. Hager, A new approach to Lipschitz continuity in state constrained optimal control, Syst. Control Lett., 35 (1998), 137-143.doi: 10.1016/S0167-6911(98)00043-7. |
[14] |
A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control, SIAM J. Control Optim., 36 (1998), 698-718.doi: 10.1137/S0363012996299314. |
[15] |
A. Engelsone, S. L. Campbell and J. T. Betts, Direct transcription solution of higher-index optimal control problems and the virtual index, Appl. Numer. Math., 57 (2007), 281-296.doi: 10.1016/j.apnum.2006.03.012. |
[16] |
A. Engelsone, S. L. Campbell, and J. T. Betts, Order of convergence in the direct transcription solution of optimal control problems, Proc. IEEE Conf. Decision Control - European Control Conference, Seville, Spain, 2005. |
[17] |
W. F. Feehery, J. R. Banga and P. I. Barton, A novel approach to dynamic optimization of ODE and DAE systems as high-index problems, AICHE annual meeting, Miami, 1995. |
[18] |
W. F. Feehery and P. I. Barton, Dynamic simulation and optimization with inequality path constraints, Comp. Chem. Eng., 20 (1996), S707-S712. |
[19] |
F. Ghanbari and F. Goreishi, Convergence analysis of the pseudospectral method for linear DAEs of index-2, Int. J. Comp. Methods, 10 (2013), 1350019-1-1350019-20.doi: 10.1142/S0219876213500199. |
[20] |
W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 87 (2000), 247-280.doi: 10.1007/s002110000178. |
[21] |
D. H. Jacobsen, M. M. Lele and J. L. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, J. Math. Anal. Appl., 35 (1971), 255-284. |
[22] |
P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, European Mathematical Society, Zürich, 2006.doi: 10.4171/017. |
[23] |
P. Kunkel and V. Mehrmann, Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index, Math. Control Signal, 20 (2008), 227-269.doi: 10.1007/s00498-008-0032-1. |
[24] |
P. Kunkel and V. Mehrmann, Formal adjoints of linear DAE operators and their role in optimal control, Electron. J. Linear Algebra, 22 (2011), 672-693.doi: 10.13001/1081-3810.1466. |
[25] |
P. Kunkel, V. Mehrmann and I. Seufer, GENDA: A software package for the numerical solution of general nonlinear differential-algebraic equations, Institut für Mathematik, TU Berlin Technical Report 730, Berlin, Germany, 2002. |
[26] |
P. Kunkel, V. Mehrmann and R. Stöver, Symmetric collocation for unstructured nonlinear differential-algebraic equations of arbitrary index, Numer. Math., 98 (2004), 277-304.doi: 10.1007/s00211-004-0534-9. |
[27] |
P. Kunkel and R. Stöver, Symmetric collocation methods for linear differential-algebraic boundary value problems, Numer. Math., 91 (2002), 475-501.doi: 10.1007/s002110100315. |
[28] |
R. Lamour, R. März and E. Weinmüller, Boundary-value problems for differential algebraic equations: a survey, Surveys in Differential Algebraic Equations III, Springer, 2015. |
[29] |
R. Pytlak, Runge-Kutta based procedure for the optimal control of differential-algebraic equations, J. Optim. Theory Appl., 97 (1998), 675-705.doi: 10.1023/A:1022698311155. |
[30] |
A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin, I. Sanders and G. T. Huntington, Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Trans. Math. Software, 37 (2010), 22:1-22:39. |
[31] |
A. Steinbrecher, M001 - The simple pendulum, Preprint 2015/26, Technische Universität Berlin, Institut of Mathematik, 2015. |
[32] |
A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y. |