2016, 6(4): 491-504. doi: 10.3934/naco.2016022

2D system analysis via dual problems and polynomial matrix inequalities

1. 

Arzamas Polytechnic Institute, Alekseev Nizhny Novgorod State Technical University, 607220, Arzamas, Russian Federation

Received  September 2015 Revised  November 2016 Published  December 2016

Application of the Lyapunov method to 2D system stability and performance analysis yields algebraic systems that can be interpreted as either sum-of-squares problems for nontrivial matrix polynomials, or parameterized linear matrix inequalities that need to be satisfied for certain ranges of parameter values. In this paper we show that dualizing core inequalities in the latter forms allows converting these systems to conventional optimization problems on sets described by polynomial matrix inequalities. Methods for solving these problems include moment-based methods or the “atomic optimization” method proposed earlier by the author. As a result, we obtain necessary conditions for 2D system stability and lower bounds on system performance. In particular, we demonstrate respective results for discrete-discrete system stability and mixed continuous-discrete system $\mathcal{H}_\infty$ performance. A numerical example is provided.
Citation: Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022
References:
[1]

P. Agathoklis, E. Jury and M. Mansour, Algebraic necessary and sufficient conditions for the stability of 2-D discrete systems,, Circuits and Systems II: Analog and Digital Signal Processing, 40 (1993), 251.

[2]

B. Anderson, P. Agathoklis, E. Jury and M. Mansour, Stability and the matrix Lyapunov equation for discrete 2-dimensional systems,, Circuits and Systems, 33 (1986), 261. doi: 10.1109/TCS.1986.1085912.

[3]

S. Boyd, L. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970777.

[4]

G. Chesi, LMI techniques for optimization over polynomials in control: A survey,, Automatic Control, 55 (2010), 2500. doi: 10.1109/TAC.2010.2046926.

[5]

G. Chesi and R. Middleton, Necessary and sufficient LMI conditions for stability and performance analysis of 2-D mixed continuous-discrete-time systems,, Automatic Control, 59 (2014), 996. doi: 10.1109/TAC.2014.2299353.

[6]

B. Cichy, P. Augusta, E. Rogers, K. Galkowski et al., On the control of distributed parameter systems using a multidimensional systems setting,, Mechanical Syst. and Signal Processing, 22 (2008), 1566.

[7]

G. Dullerud and R. D'Andrea, Distributed control of heterogeneous systems,, Automatic Control, 49 (2004), 2113. doi: 10.1109/TAC.2004.838499.

[8]

D. Henrion and J.-B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback,, Automatic Control, 51 (2006), 192. doi: 10.1109/TAC.2005.863494.

[9]

D. Henrion and J.-B. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly,, in Positive Polynomials in Control (eds. D. Henrion and A. Garulli), (2005), 293. doi: 10.1007/10997703_15.

[10]

T. Hinamoto, 2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model,, Circuits and Systems I: Fundamental Theory and Applications, 40 (1993), 102.

[11]

V. Kamenetskiy and Y. Pyatnitskiy, An iterative method of Lyapunov function construction for differential inclusions,, Systems & Control Letters, 8 (1987), 445. doi: 10.1016/0167-6911(87)90085-5.

[12]

S. Knorn and R. Middleton, Stability of two-dimensional linear systems with singularities on the stability boundary using LMIs,, Automatic Control, 58 (2013), 2579. doi: 10.1109/TAC.2013.2264852.

[13]

J.-B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM Journal on Optimization, 11 (2001), 796. doi: 10.1137/S1052623400366802.

[14]

Y. Li, M. Cantoni and E. Weyer, On water-level error propagation in controlled irrigation channels,, in Proc. IEEE Conf. Decision Control and Eur. Control Conf., (2005), 2101.

[15]

M. C. D. Oliveira, J. C. Geromel and J. Bernussou, Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems,, International Journal of Control, 75 (2002), 666. doi: 10.1080/00207170210140212.

[16]

W. Paszke, E. Rogers and K. Galkowski, H2/H output information-based disturbance attenuation for differential linear repetitive processes,, International Journal of Robust and Nonlinear Control, 21 (2011), 1981. doi: 10.1002/rnc.1672.

[17]

V. Pozdyayev, Atomic optimization. I. Search space transformation and one-dimensional problems,, Automation and Remote Control, 74 (2013), 2069. doi: 10.1134/S0005117913120096.

[18]

V. Pozdyayev, Atomic optimization, II, Multidimensional problems and polynomial matrix inequalities,, Automation and Remote Control, 75 (2014), 1155. doi: 10.1134/S0005117914060150.

[19]

V. Pozdyayev, Necessary conditions for 2D systems' stability,, in Preprints, (2015), 800.

[20]

R. Rabenstein and L. Trautmann, Towards a framework for continuous and discrete multidimensional systems,, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 73.

[21]

R. P. Roesser, A discrete state-space model for linear image processing,, Automatic Control, 20 (1975), 1.

[22]

E. Rogers, K. Galkowski and D. Owens, Control systems theory and applications for linear repetitive processes,, in Lecture Notes in Control and Information Sciences, (2007).

[23]

E. Rogers and D. Owens, Stability analysis for linear repetitive processes,, in Lecture Notes in Control and Information Sciences, (1992). doi: 10.1007/BFb0007165.

[24]

E. Rogers and D. Owens, Kronecker product based stability tests and performance bounds for a class of 2D continuous-discrete linear systems,, Linear Algebra and its Applications, 353 (2002), 33. doi: 10.1016/S0024-3795(02)00287-2.

show all references

References:
[1]

P. Agathoklis, E. Jury and M. Mansour, Algebraic necessary and sufficient conditions for the stability of 2-D discrete systems,, Circuits and Systems II: Analog and Digital Signal Processing, 40 (1993), 251.

[2]

B. Anderson, P. Agathoklis, E. Jury and M. Mansour, Stability and the matrix Lyapunov equation for discrete 2-dimensional systems,, Circuits and Systems, 33 (1986), 261. doi: 10.1109/TCS.1986.1085912.

[3]

S. Boyd, L. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970777.

[4]

G. Chesi, LMI techniques for optimization over polynomials in control: A survey,, Automatic Control, 55 (2010), 2500. doi: 10.1109/TAC.2010.2046926.

[5]

G. Chesi and R. Middleton, Necessary and sufficient LMI conditions for stability and performance analysis of 2-D mixed continuous-discrete-time systems,, Automatic Control, 59 (2014), 996. doi: 10.1109/TAC.2014.2299353.

[6]

B. Cichy, P. Augusta, E. Rogers, K. Galkowski et al., On the control of distributed parameter systems using a multidimensional systems setting,, Mechanical Syst. and Signal Processing, 22 (2008), 1566.

[7]

G. Dullerud and R. D'Andrea, Distributed control of heterogeneous systems,, Automatic Control, 49 (2004), 2113. doi: 10.1109/TAC.2004.838499.

[8]

D. Henrion and J.-B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback,, Automatic Control, 51 (2006), 192. doi: 10.1109/TAC.2005.863494.

[9]

D. Henrion and J.-B. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly,, in Positive Polynomials in Control (eds. D. Henrion and A. Garulli), (2005), 293. doi: 10.1007/10997703_15.

[10]

T. Hinamoto, 2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model,, Circuits and Systems I: Fundamental Theory and Applications, 40 (1993), 102.

[11]

V. Kamenetskiy and Y. Pyatnitskiy, An iterative method of Lyapunov function construction for differential inclusions,, Systems & Control Letters, 8 (1987), 445. doi: 10.1016/0167-6911(87)90085-5.

[12]

S. Knorn and R. Middleton, Stability of two-dimensional linear systems with singularities on the stability boundary using LMIs,, Automatic Control, 58 (2013), 2579. doi: 10.1109/TAC.2013.2264852.

[13]

J.-B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM Journal on Optimization, 11 (2001), 796. doi: 10.1137/S1052623400366802.

[14]

Y. Li, M. Cantoni and E. Weyer, On water-level error propagation in controlled irrigation channels,, in Proc. IEEE Conf. Decision Control and Eur. Control Conf., (2005), 2101.

[15]

M. C. D. Oliveira, J. C. Geromel and J. Bernussou, Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems,, International Journal of Control, 75 (2002), 666. doi: 10.1080/00207170210140212.

[16]

W. Paszke, E. Rogers and K. Galkowski, H2/H output information-based disturbance attenuation for differential linear repetitive processes,, International Journal of Robust and Nonlinear Control, 21 (2011), 1981. doi: 10.1002/rnc.1672.

[17]

V. Pozdyayev, Atomic optimization. I. Search space transformation and one-dimensional problems,, Automation and Remote Control, 74 (2013), 2069. doi: 10.1134/S0005117913120096.

[18]

V. Pozdyayev, Atomic optimization, II, Multidimensional problems and polynomial matrix inequalities,, Automation and Remote Control, 75 (2014), 1155. doi: 10.1134/S0005117914060150.

[19]

V. Pozdyayev, Necessary conditions for 2D systems' stability,, in Preprints, (2015), 800.

[20]

R. Rabenstein and L. Trautmann, Towards a framework for continuous and discrete multidimensional systems,, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 73.

[21]

R. P. Roesser, A discrete state-space model for linear image processing,, Automatic Control, 20 (1975), 1.

[22]

E. Rogers, K. Galkowski and D. Owens, Control systems theory and applications for linear repetitive processes,, in Lecture Notes in Control and Information Sciences, (2007).

[23]

E. Rogers and D. Owens, Stability analysis for linear repetitive processes,, in Lecture Notes in Control and Information Sciences, (1992). doi: 10.1007/BFb0007165.

[24]

E. Rogers and D. Owens, Kronecker product based stability tests and performance bounds for a class of 2D continuous-discrete linear systems,, Linear Algebra and its Applications, 353 (2002), 33. doi: 10.1016/S0024-3795(02)00287-2.

[1]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[2]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[3]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[4]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[5]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic & Related Models, 2009, 2 (1) : 109-134. doi: 10.3934/krm.2009.2.109

[6]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

[7]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[8]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[10]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[11]

Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111

[12]

Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465

[13]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[14]

Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256

[15]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[16]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[17]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[18]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[19]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[20]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]