\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence analysis of a parallel projection algorithm for solving convex feasibility problems

Abstract Related Papers Cited by
  • The convex feasibility problem (CFP) is a classical problem in nonlinear analysis. In this paper, we propose an inertial parallel projection algorithm for solving CFP. Different from the previous algorithms, the proposed method introduces a sequence of parameters and uses the information of last two iterations at each step. To prove its convergence in a simple way, we transform the parallel algorithm to a sequential one in a constructed product space. Preliminary experiments are conducted to demonstrate that the proposed approach converges faster than the general extrapolated algorithms.
    Mathematics Subject Classification: 49M37, 90C25, 90C90.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426.doi: 10.1137/S0036144593251710.

    [2]

    H. H. Bauschke, J. M.Borwein, and A. S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, in Proceedings of the Special Session on Optimization and Nonlinear Analysis, 1995.

    [3]

    S. Boyd, L. EI Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, Philadlphia, PA, USA, 1994.doi: 10.1137/1.9781611970777.

    [4]

    Y. Censor and A. Lent, Cyclic subgradient projections, Math. Program., 24 (1982), 233-235.doi: 10.1007/BF01585107.

    [5]

    Y. Censor, Parallel application of block iterative methods in medical imaging and radiation therapy, Math. Program., 42 (1998), 307-325.doi: 10.1007/BF01589408.

    [6]

    J. W. Chinneck, The constraint consensus method for finding approximately feasible points in nonlinear programs, INFORMS J. Comput., 16 (2004), 255-265.doi: 10.1287/ijoc.1030.0046.

    [7]

    P. L. Combeties and S. G. Kruk, Extroplation algorithm for affine-convex feasibility problems, Numer. Algorithms, 41 (2006), 239-274.doi: 10.1007/s11075-005-9010-6.

    [8]

    Y. Dang and Y. Gao, Non-monotonous accelerated parallel subgradient projection algorithm for convex feasibility problem, Optimization, 63 (2014), 571-584.doi: 10.1080/02331934.2012.677447.

    [9]

    F. Deutsch, The method of alternating orthogonal projections, Approximation Theory, Spline Functions and Applications, Kluwer Academic Publishers, Dordrecht, 1992.

    [10]

    Y. Gao, Viability criteria for differential inclusions, J. Syst. Sci. Complex., 24 (2011), 825-834.doi: 10.1007/s11424-011-9056-6.

    [11]

    U. Garcia-palomares, Parallel projected aggregation methods for solving the convex feasibility problem, SIAM J. Optim., 3 (1993), 882-900.doi: 10.1137/0803046.

    [12]

    U. M. Garcia-Palomares and F. J. Gonzalez-Castano, Incomplete projection algorithms for solving the convex feasibility problem, Numer. Algorithms, 18 (1998), 177-193.doi: 10.1023/A:1019165330848.

    [13]

    K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, Cambridge, 1990.doi: 10.1017/CBO9780511526152.

    [14]

    N. I. M. Gould, How good are projection methods for convex feasibility problems, Comput. Optim. Appl., 40 (2008), 1-12.doi: 10.1007/s10589-007-9073-5.

    [15]

    G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.

    [16]

    K. C. Kiwiel, Block-iterative surrogate projection methods for convex feasibility problem, Linear Algebra Appl., 215 (1995), 225-260.doi: 10.1016/0024-3795(93)00089-I.

    [17]

    L. Li and Y. Gao, Approximate subgradient projection algorithm for a convex feasibility problem, J. Syst. Eng. Electron., 21 (2010), 527-530.

    [18]

    T. Lucio, A parallel subgradient projections method for the convex feasibility problem, J. Comput. Appl. Math., 18 (1987), 307-320.doi: 10.1016/0377-0427(87)90004-5.

    [19]

    P. E. Mainge, Convergence theorem for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236.doi: 10.1016/j.cam.2007.07.021.

    [20]

    M. Moudafi, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2008), 447-454.doi: 10.1016/S0377-0427(02)00906-8.

    [21]

    A. Moudafi and E. Elisabeth, An approximate inertial proximal method using enlargement of a maximal monotone operator, Int. J. Pure Appl. Math., 5 (2003), 283-299.

    [22]

    Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597.

    [23]

    G. Pierra, Decompasition through formalization in a product space, Math. Program., 28 (1984), 96-115.doi: 10.1007/BF02612715.

    [24]

    B. T. Polyak, Some methods of speeding up the convergence of iteration method, Zh. Vych. Math., 4 (1964), 791-803.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return