• Previous Article
    Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence
  • NACO Home
  • This Issue
  • Next Article
    The soft landing problem for an infinite system of second order differential equations
March  2017, 7(1): 77-88. doi: 10.3934/naco.2017004

Effective approximation method for solving linear Fredholm-Volterra integral equations

1. 

Faculty of Science and Technology, University Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia

2. 

Institute for Mathematical Research (INSPEM), University Putra Malaysia (UPM), Selangor, Malaysia

3. 

Department of Mathematics, Faculty of Science, University Putra Malaysia (UPM)

4. 

Institute for Mathematical Research (INSPEM), UPM, Selangor, Malaysia

* Corresponding author: Z. K. Eshkuvatov, zainidin@usim.edu.my

Received  March 2016 Revised  February 2017 Published  February 2017

An efficient approximate method for solving Fredholm-Volterra integral equations of the third kind is presented. As a basis functions truncated Legendre series is used for unknown function and Gauss-Legendre quadrature formula with collocation method are applied to reduce problem into linear algebraic equations. The existence and uniqueness solution of the integral equation of the 3rd kind are shown as well as rate of convergence is obtained. Illustrative examples revels that the proposed method is very efficient and accurate. Finally, comparison results with the previous work are also given.

Citation: Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004
References:
[1]

K. E. Atkinson, The Numerical Solution of Integral Equation of the Second Kind Cambridge University Press, United Kingdom, 1997. doi: 10.1017/CBO9780511626340. Google Scholar

[2]

E. Babolian and F. Fattahzadeh, Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007), 1016-1022. doi: 10.1016/j.amc.2006.10.073. Google Scholar

[3]

E. Babolian and A. Davari, Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind, Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind, Applied Mathematics and Computation, 165 (2005), 223-227. doi: 10.1016/j.amc.2004.04.065. Google Scholar

[4]

E. Babolian and Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Journal of Computational and Applied Mathematics, 220 (2008), 51-57. doi: 10.1016/j.cam.2007.07.029. Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equation Cambridge University Press, United Kingdom, 2004.Google Scholar

[6]

A. Chakrabarti and S. C. Martha, Approximate solutions of Fredholm integral equations of the second kind, Approximate solutions of Fredholm integral equations of the second kind, Applied Mathematics and Computation, 211 (2009), 459-466. doi: 10.1016/j.amc.2009.01.088. Google Scholar

[7]

D. Elliott, A Chebyshev series method for the numerical solution of Fredholm integral equation, A Chebyshev series method for the numerical solution of Fredholm integral equation, Comp. J, 6 (1963), 102-111. doi: 10.1093/comjnl/6.1.102. Google Scholar

[8]

Z. K. EshkuvatovA. AhmedovN. M. A. Nik Long and O. Shafiq, Approximate solution of the system of nonlinear integral equation by Newton--Kantorovich method, Approximate solution of the system of nonlinear integral equation by Newton--Kantorovich method, Applied Mathematics and Computation, 217 (2010), 3717-3725. doi: 10.1016/j.amc.2010.09.068. Google Scholar

[9]

H. Hochstadt, Integral Equations A Wiley-Interscience Publication, New York, 1973. Google Scholar

[10]

R. P. Kanwal, Linear Integral Equations Academic Press, New York, 1997. doi: 10.1007/978-1-4612-0765-8. Google Scholar

[11]

P. K. Kythe and M. R. Schaferkotter, Handbook of Computational Methods for Integration Chapman & Hall/CRC Press, New York, 2005. Google Scholar

[12]

S. J. Majeed and H. H. Omran, Numerical methods for solving linear Fredholm-Volterra Integral Equations, Numerical methods for solving linear Fredholm-Volterra Integral Equations, Journal of Al-Nahrian University, 11 (2008), 131-134. Google Scholar

[13]

K. MaleknejadK. Nouri and M. Yousefi, Discussion on convergence of Legendre polynomial for numerical solution of integral equations, Discussion on convergence of Legendre polynomial for numerical solution of integral equations, Applied Mathematics and Computation, 193 (2007), 335-339. doi: 10.1016/j.amc.2007.03.062. Google Scholar

[14]

K. MaleknejadE. Hashemizadeh and R. Ezzati, A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation, A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 647-655. doi: 10.1016/j.cnsns.2010.05.006. Google Scholar

[15]

K. Maleknejad and M. Yousefi, Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines, Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines, Applied Mathematics and Computation, 183 (2006), 134-141. doi: 10.1016/j.amc.2006.05.104. Google Scholar

[16]

K. Maleknejad and A. S. Shamloo, Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Applied Mathematics and Computation, 195 (2008), 500-505. doi: 10.1016/j.amc.2007.05.001. Google Scholar

[17]

B. N. Mandal and S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190 (2007), 1707-1716. doi: 10.1016/j.amc.2007.02.058. Google Scholar

[18]

M. M. Mustafa and I. N. Ghanim, Numerical Solution of Linear Volterra-Fredholm Integral Equations Using Lagrange Polynomials, Numerical Solution of Linear Volterra-Fredholm Integral Equations Using Lagrange Polynomials, Mathematical Theory and Modeling, 4 (2014), 137-146. Google Scholar

[19]

N. M. A. Nik LongZ. K. EshkuvatovM. Yaghobifar and M. Hasan, Numerical Solution of Infinite Boundary Integral Equation by using Galerkin Method with Laguerre Polynomials, Numerical Solution of Infinite Boundary Integral Equation by using Galerkin Method with Laguerre Polynomials, International Journal of Computational and Mathematical Sciences, 3 (2009), 21-24. Google Scholar

[20]

M. Rahman, Integral Equations and Their Applications WIT Press, Boston, 2007. Google Scholar

show all references

References:
[1]

K. E. Atkinson, The Numerical Solution of Integral Equation of the Second Kind Cambridge University Press, United Kingdom, 1997. doi: 10.1017/CBO9780511626340. Google Scholar

[2]

E. Babolian and F. Fattahzadeh, Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007), 1016-1022. doi: 10.1016/j.amc.2006.10.073. Google Scholar

[3]

E. Babolian and A. Davari, Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind, Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind, Applied Mathematics and Computation, 165 (2005), 223-227. doi: 10.1016/j.amc.2004.04.065. Google Scholar

[4]

E. Babolian and Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Journal of Computational and Applied Mathematics, 220 (2008), 51-57. doi: 10.1016/j.cam.2007.07.029. Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equation Cambridge University Press, United Kingdom, 2004.Google Scholar

[6]

A. Chakrabarti and S. C. Martha, Approximate solutions of Fredholm integral equations of the second kind, Approximate solutions of Fredholm integral equations of the second kind, Applied Mathematics and Computation, 211 (2009), 459-466. doi: 10.1016/j.amc.2009.01.088. Google Scholar

[7]

D. Elliott, A Chebyshev series method for the numerical solution of Fredholm integral equation, A Chebyshev series method for the numerical solution of Fredholm integral equation, Comp. J, 6 (1963), 102-111. doi: 10.1093/comjnl/6.1.102. Google Scholar

[8]

Z. K. EshkuvatovA. AhmedovN. M. A. Nik Long and O. Shafiq, Approximate solution of the system of nonlinear integral equation by Newton--Kantorovich method, Approximate solution of the system of nonlinear integral equation by Newton--Kantorovich method, Applied Mathematics and Computation, 217 (2010), 3717-3725. doi: 10.1016/j.amc.2010.09.068. Google Scholar

[9]

H. Hochstadt, Integral Equations A Wiley-Interscience Publication, New York, 1973. Google Scholar

[10]

R. P. Kanwal, Linear Integral Equations Academic Press, New York, 1997. doi: 10.1007/978-1-4612-0765-8. Google Scholar

[11]

P. K. Kythe and M. R. Schaferkotter, Handbook of Computational Methods for Integration Chapman & Hall/CRC Press, New York, 2005. Google Scholar

[12]

S. J. Majeed and H. H. Omran, Numerical methods for solving linear Fredholm-Volterra Integral Equations, Numerical methods for solving linear Fredholm-Volterra Integral Equations, Journal of Al-Nahrian University, 11 (2008), 131-134. Google Scholar

[13]

K. MaleknejadK. Nouri and M. Yousefi, Discussion on convergence of Legendre polynomial for numerical solution of integral equations, Discussion on convergence of Legendre polynomial for numerical solution of integral equations, Applied Mathematics and Computation, 193 (2007), 335-339. doi: 10.1016/j.amc.2007.03.062. Google Scholar

[14]

K. MaleknejadE. Hashemizadeh and R. Ezzati, A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation, A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 647-655. doi: 10.1016/j.cnsns.2010.05.006. Google Scholar

[15]

K. Maleknejad and M. Yousefi, Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines, Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines, Applied Mathematics and Computation, 183 (2006), 134-141. doi: 10.1016/j.amc.2006.05.104. Google Scholar

[16]

K. Maleknejad and A. S. Shamloo, Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Applied Mathematics and Computation, 195 (2008), 500-505. doi: 10.1016/j.amc.2007.05.001. Google Scholar

[17]

B. N. Mandal and S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190 (2007), 1707-1716. doi: 10.1016/j.amc.2007.02.058. Google Scholar

[18]

M. M. Mustafa and I. N. Ghanim, Numerical Solution of Linear Volterra-Fredholm Integral Equations Using Lagrange Polynomials, Numerical Solution of Linear Volterra-Fredholm Integral Equations Using Lagrange Polynomials, Mathematical Theory and Modeling, 4 (2014), 137-146. Google Scholar

[19]

N. M. A. Nik LongZ. K. EshkuvatovM. Yaghobifar and M. Hasan, Numerical Solution of Infinite Boundary Integral Equation by using Galerkin Method with Laguerre Polynomials, Numerical Solution of Infinite Boundary Integral Equation by using Galerkin Method with Laguerre Polynomials, International Journal of Computational and Mathematical Sciences, 3 (2009), 21-24. Google Scholar

[20]

M. Rahman, Integral Equations and Their Applications WIT Press, Boston, 2007. Google Scholar

Table 1.  The error term $Qe_{n} \left(s\right)=\left|x\left(s\right)-Qx_{n} \left(s\right)\right|$ for Example 1
sQen(s)(11)
n=5 n=11 n=20
13.000e-191.000e-194.000e-19
0.82.000e-191.000e-194.000e-19
0.61.000e-190.000e-03.000e-19
0.40.000e-00.000e-01.000e-19
0.25.000e-207.000e-207.000e-20
0.13.000e-201.000e-197.000e-20
06.000e-201.100e-196.000e-20
sQen(s)(11)
n=5 n=11 n=20
13.000e-191.000e-194.000e-19
0.82.000e-191.000e-194.000e-19
0.61.000e-190.000e-03.000e-19
0.40.000e-00.000e-01.000e-19
0.25.000e-207.000e-207.000e-20
0.13.000e-201.000e-197.000e-20
06.000e-201.100e-196.000e-20
Table 2.  The error term $Qe_{n} \left(s\right)=\left|x\left(s\right)-Qx_{n} \left(s\right)\right|$ for Example 2
sQen(s)(11)
n=5 n=11 n=20
1.03.571e-32.676e-33.999e-4
0.99.534e-31.518e-32.031e-4
0.71.445e-31.501e-31.800e-4
0.51.014e-28.541e-41.368e-4
0.33.406e-35.103e-45.103e-4
0.12.674e-23.278e-33.673e-4
0.04.155e-12.331e-11.244e-1
sQen(s)(11)
n=5 n=11 n=20
1.03.571e-32.676e-33.999e-4
0.99.534e-31.518e-32.031e-4
0.71.445e-31.501e-31.800e-4
0.51.014e-28.541e-41.368e-4
0.33.406e-35.103e-45.103e-4
0.12.674e-23.278e-33.673e-4
0.04.155e-12.331e-11.244e-1
Table 3.  Error comparison between $ Qe_{n} \left(s\right)$ and $ Ce_{n} \left(s\right)$ for Example 2
sn=2
Qen(s)(11)Cen(s)[6]
1.009.943e-29.500e-2
0.751.874e-36.380e-2
0.503.183e-23.690e-2
0.259.565e-28.200e-2
0.007.925e-16.927e-1
sn=2
Qen(s)(11)Cen(s)[6]
1.009.943e-29.500e-2
0.751.874e-36.380e-2
0.503.183e-23.690e-2
0.259.565e-28.200e-2
0.007.925e-16.927e-1
Table 4.  The comparison of error terms $Qe_{n} \left(s\right)$ and $Me_{n} \left(s\right)$ for Example 3
sn=5n=7n=9
Qen(s)(11)Men(s)[13]Qen(s)(11)Men(s)[13]Qen(s)(11)Men(s)[13]
0.9996.935e-11.829e-12.908e-11.109e-14.768e-21.562e-2
0.7532.829e-11.026e06.962e-22.700e-11.581e-21.445e-2
0.3524.374e-11.009e01.355e-11.502e-11.387e-23.929e-2
0.0016.416e-13.025e-11.412e-11.401e-11.750e-21.152e-2
-0.0016.411e-13.058e-11.412e-11.386e-11.750e-21.123e-2
-0.3525.173e-14.409e-11.370e-14.024e-21.388e-22.596e-2
-0.7534.027e-11.165e-17.146e-21.532e-11.580e-26.695e-2
-0.9997.916e-12.605e-12.913e-11.226e-14.768e-22.196e-2
sn=5n=7n=9
Qen(s)(11)Men(s)[13]Qen(s)(11)Men(s)[13]Qen(s)(11)Men(s)[13]
0.9996.935e-11.829e-12.908e-11.109e-14.768e-21.562e-2
0.7532.829e-11.026e06.962e-22.700e-11.581e-21.445e-2
0.3524.374e-11.009e01.355e-11.502e-11.387e-23.929e-2
0.0016.416e-13.025e-11.412e-11.401e-11.750e-21.152e-2
-0.0016.411e-13.058e-11.412e-11.386e-11.750e-21.123e-2
-0.3525.173e-14.409e-11.370e-14.024e-21.388e-22.596e-2
-0.7534.027e-11.165e-17.146e-21.532e-11.580e-26.695e-2
-0.9997.916e-12.605e-12.913e-11.226e-14.768e-22.196e-2
Table 5.  The error comparisons between $Qe_{n} (s)$ and $ Me_{n} (s)$ for lager ''n''
sMen(s)[13]Qen(s)(11)
n=13n=15n=19n=13n=15n=19n=20
0.9996.092e-31.863e-29.825e03.002e-41.406e-51.385e-86.319e-10
0.7536.688e-34.460e-21.083e09.126e-52.509e-78.004e-106.528e-11
0.3526.233e-41.067e-23.697e-14.099e-53.483e-61.565e-95.362e-11
0.0013.081e-34.409e-21.212e08.363e-53.644e-63.330e-94.196e-15
-0.0013.111e-34.361e-21.208e08.363e-53.644e-63.330e-94.212e-15
-0.3523.111e-32.288e-25.682e-14.099e-53.483e-61.565e-95.362e-11
-0.7539.683e-35.025e-29.905e-19.126e-52.509e-78.004e-106.528e-11
-0.9992.291e-31.083e-17.677e03.002e-41.406e-51.385e-86.319e-10
sMen(s)[13]Qen(s)(11)
n=13n=15n=19n=13n=15n=19n=20
0.9996.092e-31.863e-29.825e03.002e-41.406e-51.385e-86.319e-10
0.7536.688e-34.460e-21.083e09.126e-52.509e-78.004e-106.528e-11
0.3526.233e-41.067e-23.697e-14.099e-53.483e-61.565e-95.362e-11
0.0013.081e-34.409e-21.212e08.363e-53.644e-63.330e-94.196e-15
-0.0013.111e-34.361e-21.208e08.363e-53.644e-63.330e-94.212e-15
-0.3523.111e-32.288e-25.682e-14.099e-53.483e-61.565e-95.362e-11
-0.7539.683e-35.025e-29.905e-19.126e-52.509e-78.004e-106.528e-11
-0.9992.291e-31.083e-17.677e03.002e-41.406e-51.385e-86.319e-10
Table 6.  Comparison of error terms $Qe_{n} \left(s\right)$ and $Mue_{n} \left(s\right)$ for Example 4
sn=5n=10
Qen(s)(11)Muen(s)[18]Qen(s)(11)Muen(s)[18]
0.06.117e-505.662e-110
0.49.766e-64.593e-61.379e-112.213e-12
0.84.252e-68.389e-61.037e-115.683e-12
1.23.841e-61.378e-51.059e-111.009e-11
1.67.448e-62.153e-51.470e-111.612e-11
2.03.880e-53.179e-56.304e-112.376e-11
sn=5n=10
Qen(s)(11)Muen(s)[18]Qen(s)(11)Muen(s)[18]
0.06.117e-505.662e-110
0.49.766e-64.593e-61.379e-112.213e-12
0.84.252e-68.389e-61.037e-115.683e-12
1.23.841e-61.378e-51.059e-111.009e-11
1.67.448e-62.153e-51.470e-111.612e-11
2.03.880e-53.179e-56.304e-112.376e-11
Table 7.  Comparison of error terms $Qe_{n} \left(s\right)$ and $Mue_{n} \left(s\right)$ for Example 4
sn=9
Qen(s)(11)Muen(s)[18]
0.09.194e-100
0.22222.775e-105.694e-11
0.44442.343e-109.869e-11
0.66671.951e-101.478e-10
0.88897.917e-102.037e-10
1.11117.663e-102.698e-10
1.33331.775e-103.493e-10
1.55562.001e-104.458e-10
1.77782.224e-105.663e-10
2.00006.907e-107.011e-10
sn=9
Qen(s)(11)Muen(s)[18]
0.09.194e-100
0.22222.775e-105.694e-11
0.44442.343e-109.869e-11
0.66671.951e-101.478e-10
0.88897.917e-102.037e-10
1.11117.663e-102.698e-10
1.33331.775e-103.493e-10
1.55562.001e-104.458e-10
1.77782.224e-105.663e-10
2.00006.907e-107.011e-10
Table 8.  Comparison of error terms $Qe_{n} \left(s\right)$ and $Mue_{n} \left(s\right)$ for Example 5
sn=5
Qen(s)(11)Muen(s)[18]
0.02.304e-60
0.24.121e-71.263e-6
0.42.096e-72.555e-6
0.61.903e-73.879e-5
0.84.451e-75.506e-5
1.02.710e-67.751e-5
sn=5
Qen(s)(11)Muen(s)[18]
0.02.304e-60
0.24.121e-71.263e-6
0.42.096e-72.555e-6
0.61.903e-73.879e-5
0.84.451e-75.506e-5
1.02.710e-67.751e-5
Table 9.  Comparison of error terms $Qe_{n} \left(s\right)$ and $Mue_{n} \left(s\right)$ for Example 5
sn=9
Qen(s)(11)Muen(s)[18]
0.09.194e-100
0.11112.775e-109.133e-13
0.22222.343e-101.842e-12
0.33331.951e-102.753e-12
0.44447.917e-103.678e-12
0.55567.663e-104.638e-12
0.66671.775e-105.685e-12
0.77782.001e-106.871e-12
0.88892.224e-108.292e-12
1.06.907e-101.005e-11
sn=9
Qen(s)(11)Muen(s)[18]
0.09.194e-100
0.11112.775e-109.133e-13
0.22222.343e-101.842e-12
0.33331.951e-102.753e-12
0.44447.917e-103.678e-12
0.55567.663e-104.638e-12
0.66671.775e-105.685e-12
0.77782.001e-106.871e-12
0.88892.224e-108.292e-12
1.06.907e-101.005e-11
[1]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[2]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[3]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[4]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[5]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[6]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[7]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[8]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[9]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[10]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[11]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[12]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[13]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[14]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[15]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[16]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[17]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[18]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[19]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[20]

Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (1)
  • Cited by (0)

[Back to Top]