March  2017, 7(1): 89-94. doi: 10.3934/naco.2017005

The soft landing problem for an infinite system of second order differential equations

1. 

Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia

2. 

Department of Informatics, Tashkent University of Information Technologies, Tashkent, Uzbekistan

* Corresponding author: Gafurjan Ibragimov

Received  January 2016 Published  February 2017

We study a soft landing differential game problem for an infinite system of second order differential equations. Control functions of pursuer and evader are subject to integral constraints. The pursuer tries to obtain equations $z(τ)=0$ and $\dot z(τ)=0$ at some time $τ > 0$ and the purpose of the evader is opposite. We obtain a condition under which soft landing problem is not solvable.

Citation: Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005
References:
[1]

J. AlbusA. MeystelA. A. ChikriiA. A. Belousov and A. I. Kozlov, Analytical method for solution of the game problem of soft landing for moving objects, Cybernetics and Systems, 37 (2001), 75-91.  doi: 10.1023/A:1016620201241.  Google Scholar

[2]

A. A. Chikrii and A. A. Belousov, Game problem of "soft landing" for second-order systems, Journal of Mathematical Sciences, 139 (2006), 6997-7012.  doi: 10.1007/s10958-006-0402-5.  Google Scholar

[3]

K. G. GuseinovA. A. Neznakhin and V. N. Ushakov, Approximate construction of attainability sets of control systems with integral constraints on the controls, Journal of Applied Mathematics and Mechanics, 63 (1999), 557-567.  doi: 10.1016/S0021-8928(99)00070-2.  Google Scholar

[4]

G. I. Ibragimov, An optimal pursuit problem in systems with distributed parameters, Cybernetics and Prikladnaya Matematika i Mekhanika, 66 (2002), 753-759.  doi: 10.1016/S0021-8928(02)90002-X.  Google Scholar

[5]

G. I. IbragimovF. Allahabi and A. Sh. Kuchkarov, pursuit problem in an infinite system of second-order differential equations, Ukrainian Mathematical Journal, 65 (2014), 1203-1216.  doi: 10.1007/s11253-014-0852-8.  Google Scholar

[6]

G. I. Ibragimov, A problem of damping of oscillation system in presence of disturbance, Uzbek Math. Journal, Tashkent, 1 (2005), 34-45.   Google Scholar

[7]

G. I. Ibragimov, The optimal pursuit problem reduced to an infinite system of differential equations, J. Appl Math Mech, 77 (2013), 470-476.  doi: 10.1016/j.jappmathmech.2013.12.002.  Google Scholar

[8]

G. I. Ibragimov, Optimal pursuit time for a differential game in the hilbert space, Science Asia, 39S (2013), 25-30.   Google Scholar

[9]

G. I. IbragimovM. TukhtasinovR. M. Hasim and I. A. Alias, A Pursuit problem described by infinite system of differential equations with coordinate-wise integral constraints on control functions, MJMS, 9 (2015), 67-76.   Google Scholar

[10]

G. I. Ibragimov, On the optimal pursuit game of several pursuers and one evader, Prikladnaya Matematika I Mekhanika, 62 (1998), 199-205.  doi: 10.1016/S0021-8928(98)00024-0.  Google Scholar

[11]

G. I. IbragimovA. Azamov and M. Khakestari, Solution of a linear pursuit-evasion game with integral constraints, ANZIAM J, 52 (2011), E59-E75.  doi: 10.1017/S1446181111000538.  Google Scholar

[12]

A. S. KuchkarovG. I. Ibragimov and M. Khakestari, On a linear differential game of optimal approach of many pursuers with one evader, Journal of Dynamical and Control Systems, 19 (2013), 1-15.  doi: 10.1007/s10883-013-9161-z.  Google Scholar

[13]

M. S. Nikolskii, The direct method in linear differential games with integral constraints, Controlled systems, IM, IK, SO AN SSSR, 2 (1969), 49-59.   Google Scholar

[14]

N. N. Petrov and I. N. Shuravina, On the "soft" capture in one group pursuit problem}, Journal of Computer and Systems Sciences International, 48 (2009), 521-526.  doi: 10.1134/S1064230709040042.  Google Scholar

[15]

N. Y. Satimov and M. Tukhtasinov, On game problems for second-order evolution equations, Russian Mathematics (Iz. VUZ), 51 (2007), 49-57.  doi: 10.3103/S1066369X07010070.  Google Scholar

[16]

N. Y. Satimov and M. Tukhtasinov, On some game problems for first-order controlled evolution equations, Differentsial'nye Uravneniya, 41 (2005), 1114-1121. doi: 10.1007/s10625-005-0263-6.  Google Scholar

show all references

References:
[1]

J. AlbusA. MeystelA. A. ChikriiA. A. Belousov and A. I. Kozlov, Analytical method for solution of the game problem of soft landing for moving objects, Cybernetics and Systems, 37 (2001), 75-91.  doi: 10.1023/A:1016620201241.  Google Scholar

[2]

A. A. Chikrii and A. A. Belousov, Game problem of "soft landing" for second-order systems, Journal of Mathematical Sciences, 139 (2006), 6997-7012.  doi: 10.1007/s10958-006-0402-5.  Google Scholar

[3]

K. G. GuseinovA. A. Neznakhin and V. N. Ushakov, Approximate construction of attainability sets of control systems with integral constraints on the controls, Journal of Applied Mathematics and Mechanics, 63 (1999), 557-567.  doi: 10.1016/S0021-8928(99)00070-2.  Google Scholar

[4]

G. I. Ibragimov, An optimal pursuit problem in systems with distributed parameters, Cybernetics and Prikladnaya Matematika i Mekhanika, 66 (2002), 753-759.  doi: 10.1016/S0021-8928(02)90002-X.  Google Scholar

[5]

G. I. IbragimovF. Allahabi and A. Sh. Kuchkarov, pursuit problem in an infinite system of second-order differential equations, Ukrainian Mathematical Journal, 65 (2014), 1203-1216.  doi: 10.1007/s11253-014-0852-8.  Google Scholar

[6]

G. I. Ibragimov, A problem of damping of oscillation system in presence of disturbance, Uzbek Math. Journal, Tashkent, 1 (2005), 34-45.   Google Scholar

[7]

G. I. Ibragimov, The optimal pursuit problem reduced to an infinite system of differential equations, J. Appl Math Mech, 77 (2013), 470-476.  doi: 10.1016/j.jappmathmech.2013.12.002.  Google Scholar

[8]

G. I. Ibragimov, Optimal pursuit time for a differential game in the hilbert space, Science Asia, 39S (2013), 25-30.   Google Scholar

[9]

G. I. IbragimovM. TukhtasinovR. M. Hasim and I. A. Alias, A Pursuit problem described by infinite system of differential equations with coordinate-wise integral constraints on control functions, MJMS, 9 (2015), 67-76.   Google Scholar

[10]

G. I. Ibragimov, On the optimal pursuit game of several pursuers and one evader, Prikladnaya Matematika I Mekhanika, 62 (1998), 199-205.  doi: 10.1016/S0021-8928(98)00024-0.  Google Scholar

[11]

G. I. IbragimovA. Azamov and M. Khakestari, Solution of a linear pursuit-evasion game with integral constraints, ANZIAM J, 52 (2011), E59-E75.  doi: 10.1017/S1446181111000538.  Google Scholar

[12]

A. S. KuchkarovG. I. Ibragimov and M. Khakestari, On a linear differential game of optimal approach of many pursuers with one evader, Journal of Dynamical and Control Systems, 19 (2013), 1-15.  doi: 10.1007/s10883-013-9161-z.  Google Scholar

[13]

M. S. Nikolskii, The direct method in linear differential games with integral constraints, Controlled systems, IM, IK, SO AN SSSR, 2 (1969), 49-59.   Google Scholar

[14]

N. N. Petrov and I. N. Shuravina, On the "soft" capture in one group pursuit problem}, Journal of Computer and Systems Sciences International, 48 (2009), 521-526.  doi: 10.1134/S1064230709040042.  Google Scholar

[15]

N. Y. Satimov and M. Tukhtasinov, On game problems for second-order evolution equations, Russian Mathematics (Iz. VUZ), 51 (2007), 49-57.  doi: 10.3103/S1066369X07010070.  Google Scholar

[16]

N. Y. Satimov and M. Tukhtasinov, On some game problems for first-order controlled evolution equations, Differentsial'nye Uravneniya, 41 (2005), 1114-1121. doi: 10.1007/s10625-005-0263-6.  Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[13]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (81)
  • Cited by (1)

[Back to Top]