[1]
|
M. Bouadoumou, Y. Zhao and Y. Lu, Jackknife empirical likelihood for the accelerated failure time model with censored data, Communications in Statistics-Simulation and Computation, 44 (2014), 1818-1832.
doi: 10.1080/03610918.2013.833234.
|
[2]
|
S. H. Chiou, S. Kang and J. Yan, Rank-based estimating equations with general weight for accelerated failure time models: an induced smoothing approach, Statistics in Medicine, 34 (2015), 1495-1510.
doi: 10.1002/sim.6415.
|
[3]
|
M. Chung, Q. Long and B. A. Johnson, A tutorial on rank-based coefficient estimation for censored data in small-and large-scale problems, Statistics and computing, 23 (2013), 601-614.
doi: 10.1007/s11222-012-9333-9.
|
[4]
|
D. R. Cox, Regression models and life-tables, Journal of the Royal Statistical Society, 34 (1972), 187-220.
|
[5]
|
D. M. Finkelstein and R. A. Wolfe, A semiparametric model for regression analysis of interval-censored failure time data, Biometrics, 41 (1985), 933-945.
doi: 10.2307/2530965.
|
[6]
|
M. Fygenson and Y. Ritov, Monotone estimating equations for censored data, The Annals of Statistics, 22 (1994), 732-746.
doi: 10.1214/aos/1176325493.
|
[7]
|
E. A. Gehan, A generalized Wilcoxon test for comparing arbitrarily single-censored samples, Biometrika, 52 (1965), 203-223.
|
[8]
|
Z. Jin, D. Y. Lin, L. J. Wei and Z. Ying, Rank-based inference for the accelerated failure time model, Biometrika, 90 (2003), 341-353.
doi: 10.1093/biomet/90.2.341.
|
[9]
|
J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data Wiley, New York, 1980.
|
[10]
|
T. L. Lai and Z. Ying, Large sample theory of a modified Buckley-James estimator for regression analysis with censored data, The Annals of Statistics, 19 (1991a), 1370-1402.
doi: 10.1214/aos/1176348253.
|
[11]
|
T. L. Lai and Z. Ying, Rank regression methods for left-truncated and right-censored data, The Annals of Statistics, 19 (1991b), 531-556.
doi: 10.1214/aos/1176348110.
|
[12]
|
D. Y. Lin, L. J. Wei and Z. Ying, Accelerated failure time models for counting processes, Biometrika, 85 (1998), 605-618.
doi: 10.1093/biomet/85.3.605.
|
[13]
|
N. Mantel, Evaluation of survival data and two new rank order statistics arising in its considerations, Cancer Chemotherapy Reports, 50 (1966), 163-170.
|
[14]
|
J. Ning, J. Qin and Y. Shen, Semiparametric accelerated failure time model for length-biased data with application to dementia study, Statistica Sinica, 24 (2014), 313-333.
|
[15]
|
L. Peng and J. P. Fine, Regression modeling of semicompeting risks data, Biometrics, 63 (2007), 96-108.
doi: 10.1111/j.1541-0420.2006.00621.x.
|
[16]
|
R. L. Prentice, Linear rank tests with right censored data, Biometrika, 65 (1978), 167-179.
doi: 10.1093/biomet/65.1.167.
|
[17]
|
Y. Ritov, Estimation in a linear regression model with censored data, The Annals of Statistics, 18 (1990), 303-328.
doi: 10.1214/aos/1176347502.
|
[18]
|
A. A. Tsiatis, Estimating regression parameters using linear rank tests for censored data, The Annals of Statistics, 18 (1990), 354-372.
doi: 10.1214/aos/1176347504.
|
[19]
|
Y. G. Wang and L. Fu, Rank regression for accelerated failure time model with clustered and censored data, Computational Statistics and Data Analysis, 55 (2011), 2334-2343.
doi: 10.1016/j.csda.2011.01.023.
|
[20]
|
L. J. Wei, Z. Ying and D. Y. Lin, Linear regression analysis of censored survival data based on rank tests, Biometrika, 77 (1990), 845-851.
doi: 10.1093/biomet/77.4.845.
|
[21]
|
H. Xue, K. F. Lam, B. J. Cowling and F. de Wolf, Semi-parametric accelerated failure time regression analysis with application to intervalcensored HIV/AIDS data, Statistics in medicine, 25 (2006), 3850-3863.
doi: 10.1002/sim.2486.
|
[22]
|
Z. Ying, A large sample study of rank estimation for censored regression data, The Annals of Statistics, 21 (1993), 76-99.
doi: 10.1214/aos/1176349016.
|
[23]
|
J. Zhang and Y. Peng, Semiparametric estimation methods for the accelerated failure time mixture cure model, Journal of the Korean Statistical Society, 41 (2012), 415-422.
doi: 10.1016/j.jkss.2012.01.003.
|