June  2017, 7(2): 201-210. doi: 10.3934/naco.2017014

Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences, 134, Lermontov St., 664033, Irkutsk, Russia

* Corresponding author: Stepan Sorokin

Received  December 2016 Revised  May 2017 Published  June 2017

Fund Project: This paper was prepared at the occasion of The 10th International Conference on Optimization: Techniques and Applications (ICOTA 2016), Ulaanbaatar, Mongolia, July 23-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Prof. Dr. Zhiyou Wu, School of Mathematical Sciences, Chongqing Normal University, Chongqing, China, Prof. Dr. Changjun Yu, Department of Mathematics and Statistics, Curtin University, Perth, Australia, and Shanghai University, China, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey

We consider a class of rightpoint-constrained state-linear (but non convex) optimal control problems, which takes its origin in the impulsive control framework. The main issue is a strengthening of the Pontryagin Maximum Principle for the addressed problem. Towards this goal, we adapt the approach, based on feedback control variations due to V.A. Dykhta [4,5,6,7]. Our necessary optimality condition, named the feedback maximum principle, is expressed completely in terms of the classical Maximum Principle, but is shown to discard non-optimal extrema. As a connected result, we derive a certain form of duality for the considered problem, and propose the dual version of the proved necessary optimality condition.

Citation: Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014
References:
[1]

A. ArutyunovD. Karamzin and F. Pereira, On constrained impulsive control problems, J. Math. Sci., 165 (2010), 654-688.

[2]

A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J Optim. Theory Appl., 81 (1994), 435-457. doi: 10.1007/BF02193094.

[3]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

[4]

V. A. Dykhta, Variational necessary optimality conditions with feedback descent controls for optimal control problems, Doklady Mathematics, 91 (2015), 394-396.

[5]

V. A. Dykhta, Positional strengthenings of the maximum principle and sufficient optimality conditions, Proceedings of the Steklov Institute of Mathematics, 293 (2016), S43-S57.

[6]

V. A. Dykhta, Weakly monotone solutions of the Hamilton-Jacobi inequality and optimality conditions with positional controls, Autom. Remote Control, 75 (2014), 829-844. doi: 10.1134/S0005117914050038.

[7]

V. A. Dykhta, Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems, Autom. Remote Control, 75 (2014), 1906-1921. doi: 10.1134/S0005117914110022.

[8]

V. Dykhta and O. Samsonyuk, Optimal Impulsive Control with Applications, Fizmathlit, Moscow, (in Russian), 2000.

[9]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides: Control System, Kluwer Acad. Publ., 1988. doi: 10.1007/978-94-015-7793-9.

[10]

V. Gurman, Singular Problems in Optimal Control, Nauka, Moscow, (in Russian), 1977.

[11]

N. N. Krasovskii and A. I. Subbotin, Game-theoretical Control Problems, Springer, New York, 1988. doi: 10.1007/978-1-4612-3716-7.

[12]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Fizmatlit, Moscow, 1974.

[13]

V. M. Matrosov, L. U. Anapolskii and S. N. Vasiliev, Comparison Method in Mathematical Control Theory, Nauka, Novosibirsk, (in Russian), 1980.

[14]

B. Miller and E. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic / Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4615-0095-7.

[15]

M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288.

[16]

L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishenko, Mathematical Theory of Optimal Processes, Fizmatlit, Moscow, (in Russian), 1961.

[17]

R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures}, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205.

[18]

O. N. Samsonyuk, Invariance sets for the nonlinear impulsive control systems}, Autom. Remote Control, 76 (2015), 405-418. doi: 10.1134/S0005117915030054.

[19]

S. P. Sorokin, Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization, Autom. Remote Control, 75 (2014), 1556-1564. doi: 10.1134/S0005117914090021.

[20]

A. I. Subbotin, Generalized Solutions of First Order Partial Derivative Equations. Prospects of Dynamical Optimization, Inst. Komp. Issled. , Izhevsk, (in Russian), 2003.

[21]

J. Warga, Variational problems with unbounded controls}, J. SIAM Control Ser.A, 3 (1987), 424-438.

[22]

S. Zavalischin and A. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dorderecht, 1997. doi: 10.1007/978-94-015-8893-5.

show all references

References:
[1]

A. ArutyunovD. Karamzin and F. Pereira, On constrained impulsive control problems, J. Math. Sci., 165 (2010), 654-688.

[2]

A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J Optim. Theory Appl., 81 (1994), 435-457. doi: 10.1007/BF02193094.

[3]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

[4]

V. A. Dykhta, Variational necessary optimality conditions with feedback descent controls for optimal control problems, Doklady Mathematics, 91 (2015), 394-396.

[5]

V. A. Dykhta, Positional strengthenings of the maximum principle and sufficient optimality conditions, Proceedings of the Steklov Institute of Mathematics, 293 (2016), S43-S57.

[6]

V. A. Dykhta, Weakly monotone solutions of the Hamilton-Jacobi inequality and optimality conditions with positional controls, Autom. Remote Control, 75 (2014), 829-844. doi: 10.1134/S0005117914050038.

[7]

V. A. Dykhta, Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems, Autom. Remote Control, 75 (2014), 1906-1921. doi: 10.1134/S0005117914110022.

[8]

V. Dykhta and O. Samsonyuk, Optimal Impulsive Control with Applications, Fizmathlit, Moscow, (in Russian), 2000.

[9]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides: Control System, Kluwer Acad. Publ., 1988. doi: 10.1007/978-94-015-7793-9.

[10]

V. Gurman, Singular Problems in Optimal Control, Nauka, Moscow, (in Russian), 1977.

[11]

N. N. Krasovskii and A. I. Subbotin, Game-theoretical Control Problems, Springer, New York, 1988. doi: 10.1007/978-1-4612-3716-7.

[12]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Fizmatlit, Moscow, 1974.

[13]

V. M. Matrosov, L. U. Anapolskii and S. N. Vasiliev, Comparison Method in Mathematical Control Theory, Nauka, Novosibirsk, (in Russian), 1980.

[14]

B. Miller and E. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic / Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4615-0095-7.

[15]

M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288.

[16]

L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishenko, Mathematical Theory of Optimal Processes, Fizmatlit, Moscow, (in Russian), 1961.

[17]

R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures}, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205.

[18]

O. N. Samsonyuk, Invariance sets for the nonlinear impulsive control systems}, Autom. Remote Control, 76 (2015), 405-418. doi: 10.1134/S0005117915030054.

[19]

S. P. Sorokin, Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization, Autom. Remote Control, 75 (2014), 1556-1564. doi: 10.1134/S0005117914090021.

[20]

A. I. Subbotin, Generalized Solutions of First Order Partial Derivative Equations. Prospects of Dynamical Optimization, Inst. Komp. Issled. , Izhevsk, (in Russian), 2003.

[21]

J. Warga, Variational problems with unbounded controls}, J. SIAM Control Ser.A, 3 (1987), 424-438.

[22]

S. Zavalischin and A. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dorderecht, 1997. doi: 10.1007/978-94-015-8893-5.

[1]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[2]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[3]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[4]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[5]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[6]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[7]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[8]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[9]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[10]

Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067

[11]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations & Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[13]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[14]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[15]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[16]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[17]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[18]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

[19]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[20]

Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]