We consider a class of rightpoint-constrained state-linear (but non convex) optimal control problems, which takes its origin in the impulsive control framework. The main issue is a strengthening of the Pontryagin Maximum Principle for the addressed problem. Towards this goal, we adapt the approach, based on feedback control variations due to V.A. Dykhta [
Citation: |
[1] | A. Arutyunov, D. Karamzin and F. Pereira, On constrained impulsive control problems, J. Math. Sci., 165 (2010), 654-688. |
[2] | A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J Optim. Theory Appl., 81 (1994), 435-457. doi: 10.1007/BF02193094. |
[3] | F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998. |
[4] | V. A. Dykhta, Variational necessary optimality conditions with feedback descent controls for optimal control problems, Doklady Mathematics, 91 (2015), 394-396. |
[5] | V. A. Dykhta, Positional strengthenings of the maximum principle and sufficient optimality conditions, Proceedings of the Steklov Institute of Mathematics, 293 (2016), S43-S57. |
[6] | V. A. Dykhta, Weakly monotone solutions of the Hamilton-Jacobi inequality and optimality conditions with positional controls, Autom. Remote Control, 75 (2014), 829-844. doi: 10.1134/S0005117914050038. |
[7] | V. A. Dykhta, Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems, Autom. Remote Control, 75 (2014), 1906-1921. doi: 10.1134/S0005117914110022. |
[8] | V. Dykhta and O. Samsonyuk, Optimal Impulsive Control with Applications, Fizmathlit, Moscow, (in Russian), 2000. |
[9] | A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides: Control System, Kluwer Acad. Publ., 1988. doi: 10.1007/978-94-015-7793-9. |
[10] | V. Gurman, Singular Problems in Optimal Control, Nauka, Moscow, (in Russian), 1977. |
[11] | N. N. Krasovskii and A. I. Subbotin, Game-theoretical Control Problems, Springer, New York, 1988. doi: 10.1007/978-1-4612-3716-7. |
[12] | N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Fizmatlit, Moscow, 1974. |
[13] | V. M. Matrosov, L. U. Anapolskii and S. N. Vasiliev, Comparison Method in Mathematical Control Theory, Nauka, Novosibirsk, (in Russian), 1980. |
[14] | B. Miller and E. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic / Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4615-0095-7. |
[15] | M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288. |
[16] | L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishenko, Mathematical Theory of Optimal Processes, Fizmatlit, Moscow, (in Russian), 1961. |
[17] | R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures}, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205. |
[18] | O. N. Samsonyuk, Invariance sets for the nonlinear impulsive control systems}, Autom. Remote Control, 76 (2015), 405-418. doi: 10.1134/S0005117915030054. |
[19] | S. P. Sorokin, Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization, Autom. Remote Control, 75 (2014), 1556-1564. doi: 10.1134/S0005117914090021. |
[20] | A. I. Subbotin, Generalized Solutions of First Order Partial Derivative Equations. Prospects of Dynamical Optimization, Inst. Komp. Issled. , Izhevsk, (in Russian), 2003. |
[21] | J. Warga, Variational problems with unbounded controls}, J. SIAM Control Ser.A, 3 (1987), 424-438. |
[22] | S. Zavalischin and A. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dorderecht, 1997. doi: 10.1007/978-94-015-8893-5. |