We consider a class of rightpoint-constrained state-linear (but non convex) optimal control problems, which takes its origin in the impulsive control framework. The main issue is a strengthening of the Pontryagin Maximum Principle for the addressed problem. Towards this goal, we adapt the approach, based on feedback control variations due to V.A. Dykhta [
| Citation: |
| [1] |
A. Arutyunov, D. Karamzin and F. Pereira, On constrained impulsive control problems, J. Math. Sci., 165 (2010), 654-688.
|
| [2] |
A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J Optim. Theory Appl., 81 (1994), 435-457.
doi: 10.1007/BF02193094.
|
| [3] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski,
Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.
|
| [4] |
V. A. Dykhta, Variational necessary optimality conditions with feedback descent controls for optimal control problems, Doklady Mathematics, 91 (2015), 394-396.
|
| [5] |
V. A. Dykhta, Positional strengthenings of the maximum principle and sufficient optimality conditions, Proceedings of the Steklov Institute of Mathematics, 293 (2016), S43-S57.
|
| [6] |
V. A. Dykhta, Weakly monotone solutions of the Hamilton-Jacobi inequality and optimality conditions with positional controls, Autom. Remote Control, 75 (2014), 829-844.
doi: 10.1134/S0005117914050038.
|
| [7] |
V. A. Dykhta, Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems, Autom. Remote Control, 75 (2014), 1906-1921.
doi: 10.1134/S0005117914110022.
|
| [8] |
V. Dykhta and O. Samsonyuk,
Optimal Impulsive Control with Applications, Fizmathlit, Moscow, (in Russian), 2000.
|
| [9] |
A. F. Filippov,
Differential Equations with Discontinuous Right-Hand Sides: Control System, Kluwer Acad. Publ., 1988.
doi: 10.1007/978-94-015-7793-9.
|
| [10] |
V. Gurman,
Singular Problems in Optimal Control, Nauka, Moscow, (in Russian), 1977.
|
| [11] |
N. N. Krasovskii and A. I. Subbotin,
Game-theoretical Control Problems, Springer, New York, 1988.
doi: 10.1007/978-1-4612-3716-7.
|
| [12] |
N. N. Krasovskii and A. I. Subbotin,
Positional Differential Games, Fizmatlit, Moscow, 1974.
|
| [13] |
V. M. Matrosov, L. U. Anapolskii and S. N. Vasiliev,
Comparison Method in Mathematical Control Theory, Nauka, Novosibirsk, (in Russian), 1980.
|
| [14] |
B. Miller and E. Rubinovich,
Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic / Plenum Publishers, New York, 2001.
doi: 10.1007/978-1-4615-0095-7.
|
| [15] |
M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288.
|
| [16] |
L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishenko,
Mathematical Theory of Optimal Processes, Fizmatlit, Moscow, (in Russian), 1961.
|
| [17] |
R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures}, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205.
|
| [18] |
O. N. Samsonyuk, Invariance sets for the nonlinear impulsive control systems}, Autom. Remote Control, 76 (2015), 405-418.
doi: 10.1134/S0005117915030054.
|
| [19] |
S. P. Sorokin, Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization, Autom. Remote Control, 75 (2014), 1556-1564.
doi: 10.1134/S0005117914090021.
|
| [20] |
A. I. Subbotin,
Generalized Solutions of First Order Partial Derivative Equations. Prospects of Dynamical Optimization, Inst. Komp. Issled. , Izhevsk, (in Russian), 2003.
|
| [21] |
J. Warga, Variational problems with unbounded controls}, J. SIAM Control Ser.A, 3 (1987), 424-438.
|
| [22] |
S. Zavalischin and A. Sesekin,
Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dorderecht, 1997.
doi: 10.1007/978-94-015-8893-5.
|