[1]
|
M. Andreatta, A. Bezdek and Jan P. Boroski, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76.
doi: 10.1007/s00283-010-9154-7.
|
[2]
|
N. Andrei, Hybrid conjugate gradient algorithm for unconstrained optimization}, JOTA, 141 (2009), 249-264.
doi: 10.1007/s10957-008-9505-0.
|
[3]
|
A. Anikin, A. Gornov and A. Andrianov, Computational technologies for Morse potential optimization, Abstracts of IV Internetional conference ''Optimization and applications'' (OPTIMA-2013), (2013), 22-23.
|
[4]
|
J. W. David and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, The Journal of Physical Chemistry A, 28 (1997), 5111-5116.
|
[5]
|
R. Enkhbat, An algorithm for maximizing a convex function over a simple set}, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999.
|
[6]
|
R. Enkhbat, Global optimization approach to Malfatti's problem}, Journal of Global Optimization, 65 (2016), 33-39.
doi: 10.1007/s10898-015-0372-6.
|
[7]
|
R. Enkhbat, M. V. Barkova and M. V. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization}, Numerical Algebra, Control and Optimization, 6 (2016), 153-160.
doi: 10.3934/naco.2016005.
|
[8]
|
R. P. Fedorenko, Approximate solution of some optimal control problems}, USSR Computational Mathematics and Mathematical Physics, 4 (1964), 89-116.
|
[9]
|
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem}, Math. Mag., 41 (1967), 251-252.
|
[10]
|
N. Gernet,
The Fundamental Problem of the Calculus of Variations,
St. Petersburg, Erlich, (1913), [in Russian].
|
[11]
|
M. Goldberg, On the original Malfatti problem, Math. Mag., 40 (1967), 241-247.
|
[12]
|
H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 2 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287.
|
[13]
|
G. A. Los,
Malfatti's optimization problem, Dep. Ukr. NIINTI, July 5,1988, in Russian.
|
[14]
|
G. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.
|
[15]
|
H. Melissen,
Packing and Covering with Circles, Thesis, Univ. Utrecht, 1997.
|
[16]
|
B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112.
|
[17]
|
M. Pervin, S. K. Roy and G. W. Weber, A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2016), 21-50.
doi: 10.3934/naco.2017002.
|
[18]
|
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration,
Annals of Operations Research, (2016), DOI: 10. 1007/s10479-016-2355-5.
doi: 10.1007/s10479-016-2355-5.
|
[19]
|
S. K. Roy, G. Maity, G. W. Weber and S. Z. Alparslan Gok,
Conic Scalarization approach to solve multi-choice multi-objective transportation problem with interval goal,
Annals of Operations Research, (2016), DOI: 10. 1007/s10479-016-2283-4.
doi: 10.1007/s10479-016-2283-4.
|
[20]
|
S. K. Roy, G. Maity and G. W. Weber, Multi-objective two-stage grey transportation problem using utility function with goals, Central European Journal of Operations Research, 25 (2017), 417-439.
doi: 10.1007/s10100-016-0464-5.
|
[21]
|
A. S. Strekalovsky, On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[22]
|
K. L. Teo, C. J. Goh and K. H. Wong,
A unified computational approach to optimal control problems,
Pitman Monographs and Surveys in Pure and Applied Mathematics. New York, Longman Scientific & Technical, 1991.
|
[23]
|
F. A. Valentine,
The problem of Lagrange with differential inequalities as added side conditions, Dissertation Univ. of Chicago, 1937.
|
[24]
|
V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem, Journal of Mathematical Sciences, 72 (1994), 3163-3177.
doi: 10.1007/BF01249514.
|