• Previous Article
    A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations
  • NACO Home
  • This Issue
  • Next Article
    Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures
September  2017, 7(3): 251-271. doi: 10.3934/naco.2017017

Adaptive Neuro-Fuzzy vibration control of a smart plate

School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Greece

* Corresponding author: gestavr@dpem.tuc.gr

Received  November 2016 Revised  June 2017 Published  July 2017

In the present paper, the vibration supression of a smart plate with the use of ANFIS (Adaptive Neuro-Fuzzy Inference System) is investigated. The whole system consists of a nonlinear mechanical model, which is an extension of the von Kármán plate model with control. The structure is subjected to external disturbances and generalized control forces. Initial and boundary conditions are set up. The initial boundary value problem is spatially-discretized by a time spectral method. The obtained discretized model is a system of nonlinear ordinary differential equations (ODEs) with respect to time. A neuro-fuzzy inference system is built and tested in order to create a nonlinear controller for the vibration supression of the plate. More specifically, a Sugeno-type fuzzy inference system is employed and trained through ANFIS. The inputs of the controller are the displacement and the velocity and the output is the control force. An effective optimization procedure is proposed and numerical results are presented.

Citation: Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017
References:
[1]

Ph. G. Ciarlet, Mathematical Elasticity, Ⅴ. Ⅱ: Theory of Plates, Elsevier, Amsterdam, 1997.

[2]

P. Ciarlet and P. Rabier, Les Equations de von Kármán, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[3]

Ph. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, 1996. doi: 10.1007/978-3-642-51761-7.

[4]

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Control, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

[5]

G. Duvaut and J. L. Lions, Les Inequations en Mecaniques et en Physiques, Dunod, 1972.

[6]

N. R. Fisco and H. Adeli, Smart structures: Part Ⅱ: Hybrid control systems and control strategies, Scientia Iranica, 18 (2011), 285-295. 

[7]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer Verlag, London, 1995. doi: 10.1007/978-1-84628-615-5.

[8]

S. Korkmaz, A review of active structural control: challenges for engineering informatics, Comput. and Struct., 89 (2011), 2113-2132. 

[9]

P. KoutsianitisG. K. TairidisG. A. DrosopoulosG. A. Foutsitzi and G. E. Stavroulakis, Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites, Acta Mechanica, 228 (2017), 1373-1392.  doi: 10.1007/s00707-016-1771-6.

[10]

A. D. Muradova, A time spectral method for solving the nonlinear dynamic equations of a rectangular elastic plate, J. Eng. Math., 92 (2015), 83-101.  doi: 10.1007/s10665-014-9752-z.

[11]

A. D. Muradova and G. E. Stavroulakis, Fuzzy vibration control of a smart plate, Int. J. Comput. Meth. Eng. Sci. Mech., 14 (2013), 212-220.  doi: 10.1080/15502287.2012.711427.

[12]

A. D. Muradova and G. E. Stavroulakis, Hybrid control of vibrations of smart von Kármán, Acta Mechanica, 226 (2015), 3463-3475.  doi: 10.1007/s00707-015-1387-2.

[13]

R. E. Precup and H. Hellendoorn, A survey on industrial applications of fuzzy control, Computers in Industry, 62 (2011), 213-226. 

[14]

A. Preumont, Vibration Control of Active Structures, Springer, 2002. doi: 10.1007/978-94-007-2033-6.

[15]

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Taylor & Francis, 2007.

[16]

A. H. N. ShiraziH. R. Owji and M. Rafeeyan, Active vibration control of an FGM rectangular plate using fuzzy logic controllers, Procedia Engineering, 14 (2011), 3019-3026. 

[17]

G. K. Tairidis, G. E. Stavroulakis, D. G. Marinova and E. C. Zacharenakis, Classical and soft robust active control of smart beams, Computat. Struct. Dynamics and Earthquake Engineer. (eds. Papadrakis, M. , Charmpis, D. C. Lagaros and N. D. , Tsompanakis), CRC Press/Balkema and Taylor & Francis Group, London, UK. , Ch. 11 (2009), 165–178.

[18]

A. R. TavakolpourM. MailahI. Z. M. Darus and O. Tokhi, Self-learning active vibration control of a flexible plate structure with piezoelectric actuator, Simul. Model. Prac. and Theory, 18 (2010), 516-532. 

[19]

Q. WenzhongaS. Jincaib and Q. Yangc, Active control of vibration using a fuzzy control method, J. of Sound and Vibration, 275 (2004), 917-930.  doi: 10.1016/S0022-460X(03)00795-8.

[20]

I. J. Zeinoun and F. Khorrami, An adaptive control scheme based on fuzzy logic and its application to smart structures, Smart Mater. Struct., 3 (1994), 266-276. 

show all references

References:
[1]

Ph. G. Ciarlet, Mathematical Elasticity, Ⅴ. Ⅱ: Theory of Plates, Elsevier, Amsterdam, 1997.

[2]

P. Ciarlet and P. Rabier, Les Equations de von Kármán, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[3]

Ph. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, 1996. doi: 10.1007/978-3-642-51761-7.

[4]

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Control, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

[5]

G. Duvaut and J. L. Lions, Les Inequations en Mecaniques et en Physiques, Dunod, 1972.

[6]

N. R. Fisco and H. Adeli, Smart structures: Part Ⅱ: Hybrid control systems and control strategies, Scientia Iranica, 18 (2011), 285-295. 

[7]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer Verlag, London, 1995. doi: 10.1007/978-1-84628-615-5.

[8]

S. Korkmaz, A review of active structural control: challenges for engineering informatics, Comput. and Struct., 89 (2011), 2113-2132. 

[9]

P. KoutsianitisG. K. TairidisG. A. DrosopoulosG. A. Foutsitzi and G. E. Stavroulakis, Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites, Acta Mechanica, 228 (2017), 1373-1392.  doi: 10.1007/s00707-016-1771-6.

[10]

A. D. Muradova, A time spectral method for solving the nonlinear dynamic equations of a rectangular elastic plate, J. Eng. Math., 92 (2015), 83-101.  doi: 10.1007/s10665-014-9752-z.

[11]

A. D. Muradova and G. E. Stavroulakis, Fuzzy vibration control of a smart plate, Int. J. Comput. Meth. Eng. Sci. Mech., 14 (2013), 212-220.  doi: 10.1080/15502287.2012.711427.

[12]

A. D. Muradova and G. E. Stavroulakis, Hybrid control of vibrations of smart von Kármán, Acta Mechanica, 226 (2015), 3463-3475.  doi: 10.1007/s00707-015-1387-2.

[13]

R. E. Precup and H. Hellendoorn, A survey on industrial applications of fuzzy control, Computers in Industry, 62 (2011), 213-226. 

[14]

A. Preumont, Vibration Control of Active Structures, Springer, 2002. doi: 10.1007/978-94-007-2033-6.

[15]

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Taylor & Francis, 2007.

[16]

A. H. N. ShiraziH. R. Owji and M. Rafeeyan, Active vibration control of an FGM rectangular plate using fuzzy logic controllers, Procedia Engineering, 14 (2011), 3019-3026. 

[17]

G. K. Tairidis, G. E. Stavroulakis, D. G. Marinova and E. C. Zacharenakis, Classical and soft robust active control of smart beams, Computat. Struct. Dynamics and Earthquake Engineer. (eds. Papadrakis, M. , Charmpis, D. C. Lagaros and N. D. , Tsompanakis), CRC Press/Balkema and Taylor & Francis Group, London, UK. , Ch. 11 (2009), 165–178.

[18]

A. R. TavakolpourM. MailahI. Z. M. Darus and O. Tokhi, Self-learning active vibration control of a flexible plate structure with piezoelectric actuator, Simul. Model. Prac. and Theory, 18 (2010), 516-532. 

[19]

Q. WenzhongaS. Jincaib and Q. Yangc, Active control of vibration using a fuzzy control method, J. of Sound and Vibration, 275 (2004), 917-930.  doi: 10.1016/S0022-460X(03)00795-8.

[20]

I. J. Zeinoun and F. Khorrami, An adaptive control scheme based on fuzzy logic and its application to smart structures, Smart Mater. Struct., 3 (1994), 266-276. 

Figure 1.  The structure of a fuzzy inference system
Figure 2.  Displacement (input 1) membership functions
Figure 3.  Velocity (input 2) membership functions
Figure 4.  Control force (output) membership functions
Figure 5.  Displacement before and after control with Mamdani FIS ($\omega=10\pi$)
Figure 6.  Velocity before and after control with Mamdani FIS ($\omega=10\pi$)
Figure 7.  External and Control forces with Mamdani FIS ($\omega=10\pi$)
Figure 8.  Clusters of input 1 (Displacement)
Figure 9.  Clusters of input 2 (Velocity)
Figure 10.  Displacement before and after control with Sugeno FIS ($\omega=10\pi$)
Figure 11.  Velocity before and after control with Sugeno FIS ($\omega=10\pi$)
Figure 12.  External and Control forces with Sugeno FIS ($\omega=10\pi$)
Figure 13.  Displacement before and after control with Sugeno FIS ($\omega=5\pi$)
Figure 14.  Velocity before and after control with Sugenoi FIS ($\omega=5\pi$)
Figure 15.  External and Control forces with Sugenoi FIS ($\omega=5\pi$)
Figure 16.  Displacement before and after ANFIS with $\omega=10$, $D=10$ (the linear problem)
Figure 20.  Displacement before and after ANFIS with $\omega=10$, $D=50$ (the linear problem)
Figure 17.  Displacement before and after using LQR with $\omega=10$, $D=10$
Figure 21.  Displacement before and after using LQR with $\omega=10$, $D=50$
Figure 18.  Loading and control forces with ANFIS with $\omega=10$, $D=10$ (the linear problem)
Figure 22.  Loading and control forces with ANFIS with $\omega=10$, $D=50$ (the linear problem)
Figure 19.  Loading and control forces with using LQR with $\omega=10$, $D=10$
Figure 23.  Loading and control forces with using LQR with $\omega=10$, $D=50$
[1]

Julian Braun, Bernd Schmidt. An atomistic derivation of von-Kármán plate theory. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022019

[2]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[3]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[4]

Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure and Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143

[5]

Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 767-796. doi: 10.3934/eect.2020092

[6]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[7]

Bing Sun. Optimal control of transverse vibration of a moving string with time-varying lengths. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021042

[8]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[9]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220

[10]

Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022080

[11]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[12]

Nasser H. Sweilam, Taghreed A. Assiri, Muner M. Abou Hasan. Optimal control problem of variable-order delay system of advertising procedure: Numerical treatment. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1247-1268. doi: 10.3934/dcdss.2021085

[13]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[14]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[15]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure and Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[16]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[17]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[18]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[19]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[20]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

 Impact Factor: 

Metrics

  • PDF downloads (269)
  • HTML views (264)
  • Cited by (4)

[Back to Top]