• Previous Article
    A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations
  • NACO Home
  • This Issue
  • Next Article
    Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures
September  2017, 7(3): 251-271. doi: 10.3934/naco.2017017

Adaptive Neuro-Fuzzy vibration control of a smart plate

School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Greece

* Corresponding author: gestavr@dpem.tuc.gr

Received  November 2016 Revised  June 2017 Published  July 2017

In the present paper, the vibration supression of a smart plate with the use of ANFIS (Adaptive Neuro-Fuzzy Inference System) is investigated. The whole system consists of a nonlinear mechanical model, which is an extension of the von Kármán plate model with control. The structure is subjected to external disturbances and generalized control forces. Initial and boundary conditions are set up. The initial boundary value problem is spatially-discretized by a time spectral method. The obtained discretized model is a system of nonlinear ordinary differential equations (ODEs) with respect to time. A neuro-fuzzy inference system is built and tested in order to create a nonlinear controller for the vibration supression of the plate. More specifically, a Sugeno-type fuzzy inference system is employed and trained through ANFIS. The inputs of the controller are the displacement and the velocity and the output is the control force. An effective optimization procedure is proposed and numerical results are presented.

Citation: Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017
References:
[1]

Ph. G. Ciarlet, Mathematical Elasticity, Ⅴ. Ⅱ: Theory of Plates, Elsevier, Amsterdam, 1997.  Google Scholar

[2]

P. Ciarlet and P. Rabier, Les Equations de von Kármán, Springer-Verlag, Berlin, Heidelberg, New York, 1980.  Google Scholar

[3]

Ph. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, 1996. doi: 10.1007/978-3-642-51761-7.  Google Scholar

[4]

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Control, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1996. Google Scholar

[5]

G. Duvaut and J. L. Lions, Les Inequations en Mecaniques et en Physiques, Dunod, 1972.  Google Scholar

[6]

N. R. Fisco and H. Adeli, Smart structures: Part Ⅱ: Hybrid control systems and control strategies, Scientia Iranica, 18 (2011), 285-295.   Google Scholar

[7]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer Verlag, London, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[8]

S. Korkmaz, A review of active structural control: challenges for engineering informatics, Comput. and Struct., 89 (2011), 2113-2132.   Google Scholar

[9]

P. KoutsianitisG. K. TairidisG. A. DrosopoulosG. A. Foutsitzi and G. E. Stavroulakis, Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites, Acta Mechanica, 228 (2017), 1373-1392.  doi: 10.1007/s00707-016-1771-6.  Google Scholar

[10]

A. D. Muradova, A time spectral method for solving the nonlinear dynamic equations of a rectangular elastic plate, J. Eng. Math., 92 (2015), 83-101.  doi: 10.1007/s10665-014-9752-z.  Google Scholar

[11]

A. D. Muradova and G. E. Stavroulakis, Fuzzy vibration control of a smart plate, Int. J. Comput. Meth. Eng. Sci. Mech., 14 (2013), 212-220.  doi: 10.1080/15502287.2012.711427.  Google Scholar

[12]

A. D. Muradova and G. E. Stavroulakis, Hybrid control of vibrations of smart von Kármán, Acta Mechanica, 226 (2015), 3463-3475.  doi: 10.1007/s00707-015-1387-2.  Google Scholar

[13]

R. E. Precup and H. Hellendoorn, A survey on industrial applications of fuzzy control, Computers in Industry, 62 (2011), 213-226.   Google Scholar

[14]

A. Preumont, Vibration Control of Active Structures, Springer, 2002. doi: 10.1007/978-94-007-2033-6.  Google Scholar

[15]

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Taylor & Francis, 2007. Google Scholar

[16]

A. H. N. ShiraziH. R. Owji and M. Rafeeyan, Active vibration control of an FGM rectangular plate using fuzzy logic controllers, Procedia Engineering, 14 (2011), 3019-3026.   Google Scholar

[17]

G. K. Tairidis, G. E. Stavroulakis, D. G. Marinova and E. C. Zacharenakis, Classical and soft robust active control of smart beams, Computat. Struct. Dynamics and Earthquake Engineer. (eds. Papadrakis, M. , Charmpis, D. C. Lagaros and N. D. , Tsompanakis), CRC Press/Balkema and Taylor & Francis Group, London, UK. , Ch. 11 (2009), 165–178. Google Scholar

[18]

A. R. TavakolpourM. MailahI. Z. M. Darus and O. Tokhi, Self-learning active vibration control of a flexible plate structure with piezoelectric actuator, Simul. Model. Prac. and Theory, 18 (2010), 516-532.   Google Scholar

[19]

Q. WenzhongaS. Jincaib and Q. Yangc, Active control of vibration using a fuzzy control method, J. of Sound and Vibration, 275 (2004), 917-930.  doi: 10.1016/S0022-460X(03)00795-8.  Google Scholar

[20]

I. J. Zeinoun and F. Khorrami, An adaptive control scheme based on fuzzy logic and its application to smart structures, Smart Mater. Struct., 3 (1994), 266-276.   Google Scholar

show all references

References:
[1]

Ph. G. Ciarlet, Mathematical Elasticity, Ⅴ. Ⅱ: Theory of Plates, Elsevier, Amsterdam, 1997.  Google Scholar

[2]

P. Ciarlet and P. Rabier, Les Equations de von Kármán, Springer-Verlag, Berlin, Heidelberg, New York, 1980.  Google Scholar

[3]

Ph. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, 1996. doi: 10.1007/978-3-642-51761-7.  Google Scholar

[4]

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Control, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1996. Google Scholar

[5]

G. Duvaut and J. L. Lions, Les Inequations en Mecaniques et en Physiques, Dunod, 1972.  Google Scholar

[6]

N. R. Fisco and H. Adeli, Smart structures: Part Ⅱ: Hybrid control systems and control strategies, Scientia Iranica, 18 (2011), 285-295.   Google Scholar

[7]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer Verlag, London, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[8]

S. Korkmaz, A review of active structural control: challenges for engineering informatics, Comput. and Struct., 89 (2011), 2113-2132.   Google Scholar

[9]

P. KoutsianitisG. K. TairidisG. A. DrosopoulosG. A. Foutsitzi and G. E. Stavroulakis, Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites, Acta Mechanica, 228 (2017), 1373-1392.  doi: 10.1007/s00707-016-1771-6.  Google Scholar

[10]

A. D. Muradova, A time spectral method for solving the nonlinear dynamic equations of a rectangular elastic plate, J. Eng. Math., 92 (2015), 83-101.  doi: 10.1007/s10665-014-9752-z.  Google Scholar

[11]

A. D. Muradova and G. E. Stavroulakis, Fuzzy vibration control of a smart plate, Int. J. Comput. Meth. Eng. Sci. Mech., 14 (2013), 212-220.  doi: 10.1080/15502287.2012.711427.  Google Scholar

[12]

A. D. Muradova and G. E. Stavroulakis, Hybrid control of vibrations of smart von Kármán, Acta Mechanica, 226 (2015), 3463-3475.  doi: 10.1007/s00707-015-1387-2.  Google Scholar

[13]

R. E. Precup and H. Hellendoorn, A survey on industrial applications of fuzzy control, Computers in Industry, 62 (2011), 213-226.   Google Scholar

[14]

A. Preumont, Vibration Control of Active Structures, Springer, 2002. doi: 10.1007/978-94-007-2033-6.  Google Scholar

[15]

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Taylor & Francis, 2007. Google Scholar

[16]

A. H. N. ShiraziH. R. Owji and M. Rafeeyan, Active vibration control of an FGM rectangular plate using fuzzy logic controllers, Procedia Engineering, 14 (2011), 3019-3026.   Google Scholar

[17]

G. K. Tairidis, G. E. Stavroulakis, D. G. Marinova and E. C. Zacharenakis, Classical and soft robust active control of smart beams, Computat. Struct. Dynamics and Earthquake Engineer. (eds. Papadrakis, M. , Charmpis, D. C. Lagaros and N. D. , Tsompanakis), CRC Press/Balkema and Taylor & Francis Group, London, UK. , Ch. 11 (2009), 165–178. Google Scholar

[18]

A. R. TavakolpourM. MailahI. Z. M. Darus and O. Tokhi, Self-learning active vibration control of a flexible plate structure with piezoelectric actuator, Simul. Model. Prac. and Theory, 18 (2010), 516-532.   Google Scholar

[19]

Q. WenzhongaS. Jincaib and Q. Yangc, Active control of vibration using a fuzzy control method, J. of Sound and Vibration, 275 (2004), 917-930.  doi: 10.1016/S0022-460X(03)00795-8.  Google Scholar

[20]

I. J. Zeinoun and F. Khorrami, An adaptive control scheme based on fuzzy logic and its application to smart structures, Smart Mater. Struct., 3 (1994), 266-276.   Google Scholar

Figure 1.  The structure of a fuzzy inference system
Figure 2.  Displacement (input 1) membership functions
Figure 3.  Velocity (input 2) membership functions
Figure 4.  Control force (output) membership functions
Figure 5.  Displacement before and after control with Mamdani FIS ($\omega=10\pi$)
Figure 6.  Velocity before and after control with Mamdani FIS ($\omega=10\pi$)
Figure 7.  External and Control forces with Mamdani FIS ($\omega=10\pi$)
Figure 8.  Clusters of input 1 (Displacement)
Figure 9.  Clusters of input 2 (Velocity)
Figure 10.  Displacement before and after control with Sugeno FIS ($\omega=10\pi$)
Figure 11.  Velocity before and after control with Sugeno FIS ($\omega=10\pi$)
Figure 12.  External and Control forces with Sugeno FIS ($\omega=10\pi$)
Figure 13.  Displacement before and after control with Sugeno FIS ($\omega=5\pi$)
Figure 14.  Velocity before and after control with Sugenoi FIS ($\omega=5\pi$)
Figure 15.  External and Control forces with Sugenoi FIS ($\omega=5\pi$)
Figure 16.  Displacement before and after ANFIS with $\omega=10$, $D=10$ (the linear problem)
Figure 20.  Displacement before and after ANFIS with $\omega=10$, $D=50$ (the linear problem)
Figure 17.  Displacement before and after using LQR with $\omega=10$, $D=10$
Figure 21.  Displacement before and after using LQR with $\omega=10$, $D=50$
Figure 18.  Loading and control forces with ANFIS with $\omega=10$, $D=10$ (the linear problem)
Figure 22.  Loading and control forces with ANFIS with $\omega=10$, $D=50$ (the linear problem)
Figure 19.  Loading and control forces with using LQR with $\omega=10$, $D=10$
Figure 23.  Loading and control forces with using LQR with $\omega=10$, $D=50$
[1]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[2]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[3]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[4]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[5]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[12]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[15]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[16]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[17]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[18]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[19]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

 Impact Factor: 

Metrics

  • PDF downloads (95)
  • HTML views (153)
  • Cited by (4)

[Back to Top]