[1]
|
J. S. Arora, Introduction to Optimum Design, McGraw–Hill, New York, 1989.
|
[2]
|
N. Bacanin and M. Tuba, Artificial Bee Colony (ABC) algorithm for constrained optimization improved with genetic operators, Studies in Informatics and Control, 21 (2012), 137-146.
|
[3]
|
N. Bacanin, I. Brajevic and M. Tuba, Firefly Algorithm Applied to Integer Programming Problems, Recent Advances in Mathematics, 2013.
|
[4]
|
J. W. Bandler and C. Charalambous, Nonlinear programming using minimax techniques, Journal of Optimization Theory and Applications, 13 (1974), 607-619.
doi: 10.1007/BF00933620.
|
[5]
|
B. Borchers and J. E. Mitchell, Using an interior point method in a branch and bound algorithm for integer programming, Technical Report, Rensselaer Polytechnic Institute, July 1992.
doi: 10.1016/0305-0548(94)90024-8.
|
[6]
|
S. A. Chu, P. -W. Tsai and J. -S. Pan. Cat swarm optimization, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4099 (2006), 854–858.
|
[7]
|
M. Dorigo, Optimization, Learning and Natural Algorithms, Ph. D. Thesis, Politecnico di Milano, Italy, 1992.
|
[8]
|
D. Z. Du and P. M. Pardalose, Minimax and Applications, Kluwer, 1995.
doi: 10.1007/978-1-4613-3557-3.
|
[9]
|
R. Fletcher, Practical Method of Optimization, Vol. 1 & 2, John Wiley and Sons, 1980.
|
[10]
|
A. Glankwahmdee, J. S. Liebman and G. L. Hogg, Unconstrained discrete nonlinear programming, Engineering Optimization, 4 (1979), 95-107.
|
[11]
|
P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, London, 1981.
|
[12]
|
J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
|
[13]
|
A. C. P. Isabel, E. Santo and E. Fernandes, Heuristics pattern search for bound constrained minimax problems, Computational Science and Its Applications, ICCSA, 6784 (2011), 174-184.
doi: 10.1007/978-3-642-21931-3_15.
|
[14]
|
R. Jovanovic and M. Tuba, An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem, Applied Soft Computing, 11 (2011), 5360-5366.
|
[15]
|
R. Jovanovic and M. Tuba, Ant colony optimization algorithm with pheromone correction strategy for minimum connected dominating set problem, Computer Science and Information Systems (ComSIS), 10 (2013), 133-149.
doi: 10.2298/CSIS110927038J.
|
[16]
|
D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, Journal of Global Optimization, 39 (2007), 459-471.
doi: 10.1007/s10898-007-9149-x.
|
[17]
|
J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International Conference on Neural Networks, 4 (1995), 1942-1948.
|
[18]
|
E. C. Laskari, K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization for integer programming, Proceedings of the IEEE 2002 Congress on Evolutionary Computation, Honolulu (HI), (2002), 1582–1587.
|
[19]
|
E. L. Lawler and D. W. Wood, Branch and bound methods: A survey, Operations Research, 14 (1966), 699-719.
|
[20]
|
X. L. Li, Z. J. Shao and J. X. Qian, An optimizing method based on autonomous animals: Fish-swarm algorithm, System Engineering Theory and Practice, 22 (2003), 32-38.
|
[21]
|
G. Liuzzi, S. Lucidi and M. Sciandrone, A derivative-free algorithm for linearly constrained finite minimax problems, SIAM Journal on Optimization, 16 (2006), 1054-1075.
doi: 10.1137/040615821.
|
[22]
|
L. Lukan and J. Vlcek, Test problems for nonsmooth unconstrained and linearly constrained optimization, Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 2000.
|
[23]
|
V. M. Manquinho, J. P. Marques Silva, A. L. Oliveira and K. A. Sakallah, Branch and bound algorithms for highly constrained integer programs, Technical Report, Cadence European Laboratories, Portugal, 1997.
|
[24]
|
S. Mirjalili, S. M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69 (2014), 46-61.
|
[25]
|
J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7 (1965), 308-313.
doi: 10.1093/comjnl/7.4.308.
|
[26]
|
G. L. Nemhauser, A. H. G. Rinnooy Kan and M. J. Todd, Handbooks in OR & MS, volume 1. Elsevier, 1989.
|
[27]
|
K. E. Parsopoulos and M. N. Vrahatis, Unified particle swarm optimization for tackling operations research problems, in Proceeding of IEEE 2005 swarm Intelligence Symposium, Pasadena, USA, (2005), 53-59.
|
[28]
|
M. K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, Control Systems, IEEE, 22 (2002), 52-67.
|
[29]
|
Y. G. Petalas, K. E. Parsopoulos and M. N. Vrahatis, Memetic particle swarm optimization, Ann oper Res, 156 (2007), 99-127.
doi: 10.1007/s10479-007-0224-y.
|
[30]
|
E. Polak, J. O. Royset and R. S. Womersley, Algorithms with adaptive smoothing for finite minimax problems, Journal of Optimization Theory and Applications, 119 (2003), 459-484.
doi: 10.1023/B:JOTA.0000006685.60019.3e.
|
[31]
|
S. S. Rao, Engineering Optimization-Theory and Practice, Wiley: New Delhi, 1994.
|
[32]
|
G. Rudolph, An evolutionary algorithm for integer programming, in Parallel Problem Solving from Nature(eds. Y. Davidor, H-P. Schwefel, and R. Mnner), 3 (1994), 139-148.
|
[33]
|
E. Sandgen, Nonlinear integer and discrete programming in mechanical design optimization, Journal of Mechanical Design (ASME), 112 (1990), 223-229.
|
[34]
|
H. P. Schwefel, Evolution and Optimum Seeking, New York: Wiley, 1995.
|
[35]
|
R. Storn and K. Price, Differential evolution simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341-359.
doi: 10.1023/A:1008202821328.
|
[36]
|
R. Tang, S. Fong, X. S. Yang and S. Deb, Wolf search algorithm with ephemeral memory, In Digital Information Management (ICDIM), 2012 Seventh International Conference on Digital Information Management, (2012), 165–172.
|
[37]
|
D. Teodorovic and M. DellOrco. Bee colony optimization cooperative learning approach to complex transportation problems, In Advanced OR and AI Methods in Transportation, Proceedings of 16th MiniEURO Conference and 10th Meeting of EWGT (13-16 September 2005). Poznan: Publishing House of the Polish Operational and System Research, (2005), 51–60.
|
[38]
|
M. Tuba, N. Bacanin and N. Stanarevic, Adjusted artificial bee colony (ABC) algorithm for engineering problems, WSEAS Transaction on Computers, 1 (2012), 111-120.
|
[39]
|
M. Tuba, M. Subotic and N. Stanarevic, Performance of a modified cuckoo search algorithm for unconstrained optimization problems, WSEAS Transactions on Systems, 11 (2012), 62-74.
|
[40]
|
B. Wilson, A Simplicial Algorithm for Concave Programming, PhD thesis, Harvard University, 1963.
|
[41]
|
S. Xu, Smoothing method for minimax problems, Computational Optimization and Applications, 20 (2001), 267-279.
doi: 10.1023/A:1011211101714.
|
[42]
|
X. S. Yang, A new metaheuristic bat-inspired algorithm, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), (2010), 65-74.
|
[43]
|
X. S. Yang, Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation, 2 (2010), 78-84.
|
[44]
|
X. S. Yang and S. Deb, Cuckoo search via levy fights, in Nature & Biologically Inspired Computing, NaBIC 2009, World Congress on, IEEE, (2009), 210–214.
|
[45]
|
Z. Shen, A. Neumaier and M. C. Eiermann, Solving minimax problems by interval methods, BIT, 30 (1990), 742-751.
doi: 10.1007/BF01933221.
|