September  2017, 7(3): 325-344. doi: 10.3934/naco.2017021

Analysis of optimal boundary control for a three-dimensional reaction-diffusion system

1. 

Zhuhai College of Jilin University, Zhuhai, China

2. 

School of Science, Curtin University, Australia

3. 

Department of Mathematics and Statistics, Curtin University, Australia

4. 

School of Business, National University of Singapore, Singapore

5. 

Business School, Nankai University, Tianjin, China

* Corresponding author

The reviewing process of the paper was handled by Shengjie Li as Guest Editor

Received  April 2016 Revised  May 2017 Published  July 2017

Fund Project: This work is partially supported by Australian Research Council Grant DP160102189 and by a grant from Curtin University, Australia.

This paper is concerned with optimal boundary control of a three dimensional reaction-diffusion system in a more general form than what has been presented in the literature. The state equations are analyzed and the optimal control problem is investigated. Necessary and sufficient optimality conditions are derived. The model is widely applicable due to its generality. Some examples in applications are discussed.

Citation: Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021
References:
[1]

W. BarthelC. John and F. Tröltzsch, Optimal boundary control of a system of reaction diffusion equations, Z. Angew. Math. Mech., 90 (2010), 966-982.  doi: 10.1002/zamm.200900359.  Google Scholar

[2]

E. Casas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., 35 (1997), 1297-1327.  doi: 10.1137/S0363012995283637.  Google Scholar

[3]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 117 (2015), 3-44.  doi: 10.1365/s13291-014-0109-3.  Google Scholar

[4]

Z. Chen and K. H. Hoffmann, Numerical solutions of the optimal control problem governed by a phase field model, in Estimation and Control of Distributed Parameter Systems (eds W. Desch, F. Kappel and K. Kunisch), ISNM Vol. 100, Birkhäuser Verlag, Basel, (1991), 79–97. doi: 10.1007/978-3-0348-6418-3_5.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations, in: Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island, 1998.  Google Scholar

[6]

R. Griesse, Parametric Sensitivity Analysis for Control-Constrained Optimal Control Problems Governed by Systems of Parabolic Partial Differential Equations, PhD thesis, University of Bayreuth, Bayreuth, 2003. Google Scholar

[7]

R. Griesse and S. Volkwein, A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system, SIAM J. Control Optim., 44 (2005), 467-494.  doi: 10.1137/S0363012903438696.  Google Scholar

[8]

R. Griesse and S. Volkwein, Parametric sensitivity analysis for optimal boundary control of a 3D reaction-diffusion system, in: Large-Scale Nonlinear Optimization Nonconvex Optimization and its Applications, 83 (2006), 127–149. doi: 10.1007/0-387-30065-1_9.  Google Scholar

[9]

M. Heinkenschloss, The numerical solution of a control problem governed by a phase field model, Optim. Methods Software, 7 (1997), 211-263.  doi: 10.1080/10556789708805656.  Google Scholar

[10]

M. Heinkenschloss and E. W. Sachs, Numerical solution of a constrained control problem for a phase field model, in Control and Estimation of Distributed Parameter Systems (eds. W. Desch, F. Kappel and K. Kunisch), ISNM Vol. 118, Birkhäuser Verlag, Basel, (1994), 171–188.  Google Scholar

[11]

M. Hintz, R. Pinnau and M. Ulbrich, Optimization with PDF Constraints, Springer, 2009. Google Scholar

[12]

Y. JiangY. He and J. Sun, Proximal analysis and the minimal time function of a class of semilinear control systems, J. Optim. Theory. Appl., 169 (2016), 784-800.  doi: 10.1007/s10957-015-0848-z.  Google Scholar

[13]

C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 87 (1982), 165-198.  doi: 10.1016/0022-247X(82)90160-3.  Google Scholar

[14]

J. P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations, Appl. Math. Optim., 39 (1999), 143-177.  doi: 10.1007/s002459900102.  Google Scholar

[15]

E. Sachs, A parabolic control problem with a boundary condition of the Stefan-Boltzman type, Z. Angew. Math. Mech., 58 (1978), 443-449.  doi: 10.1002/zamm.19780581005.  Google Scholar

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations - Theory, Methods and Applications, in: Graduate Studies in Mathematics, Vol. 112, American Mathematical Society, Providence, 2010. doi: 10.1090/gsm/112.  Google Scholar

show all references

References:
[1]

W. BarthelC. John and F. Tröltzsch, Optimal boundary control of a system of reaction diffusion equations, Z. Angew. Math. Mech., 90 (2010), 966-982.  doi: 10.1002/zamm.200900359.  Google Scholar

[2]

E. Casas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., 35 (1997), 1297-1327.  doi: 10.1137/S0363012995283637.  Google Scholar

[3]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 117 (2015), 3-44.  doi: 10.1365/s13291-014-0109-3.  Google Scholar

[4]

Z. Chen and K. H. Hoffmann, Numerical solutions of the optimal control problem governed by a phase field model, in Estimation and Control of Distributed Parameter Systems (eds W. Desch, F. Kappel and K. Kunisch), ISNM Vol. 100, Birkhäuser Verlag, Basel, (1991), 79–97. doi: 10.1007/978-3-0348-6418-3_5.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations, in: Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island, 1998.  Google Scholar

[6]

R. Griesse, Parametric Sensitivity Analysis for Control-Constrained Optimal Control Problems Governed by Systems of Parabolic Partial Differential Equations, PhD thesis, University of Bayreuth, Bayreuth, 2003. Google Scholar

[7]

R. Griesse and S. Volkwein, A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system, SIAM J. Control Optim., 44 (2005), 467-494.  doi: 10.1137/S0363012903438696.  Google Scholar

[8]

R. Griesse and S. Volkwein, Parametric sensitivity analysis for optimal boundary control of a 3D reaction-diffusion system, in: Large-Scale Nonlinear Optimization Nonconvex Optimization and its Applications, 83 (2006), 127–149. doi: 10.1007/0-387-30065-1_9.  Google Scholar

[9]

M. Heinkenschloss, The numerical solution of a control problem governed by a phase field model, Optim. Methods Software, 7 (1997), 211-263.  doi: 10.1080/10556789708805656.  Google Scholar

[10]

M. Heinkenschloss and E. W. Sachs, Numerical solution of a constrained control problem for a phase field model, in Control and Estimation of Distributed Parameter Systems (eds. W. Desch, F. Kappel and K. Kunisch), ISNM Vol. 118, Birkhäuser Verlag, Basel, (1994), 171–188.  Google Scholar

[11]

M. Hintz, R. Pinnau and M. Ulbrich, Optimization with PDF Constraints, Springer, 2009. Google Scholar

[12]

Y. JiangY. He and J. Sun, Proximal analysis and the minimal time function of a class of semilinear control systems, J. Optim. Theory. Appl., 169 (2016), 784-800.  doi: 10.1007/s10957-015-0848-z.  Google Scholar

[13]

C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 87 (1982), 165-198.  doi: 10.1016/0022-247X(82)90160-3.  Google Scholar

[14]

J. P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations, Appl. Math. Optim., 39 (1999), 143-177.  doi: 10.1007/s002459900102.  Google Scholar

[15]

E. Sachs, A parabolic control problem with a boundary condition of the Stefan-Boltzman type, Z. Angew. Math. Mech., 58 (1978), 443-449.  doi: 10.1002/zamm.19780581005.  Google Scholar

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations - Theory, Methods and Applications, in: Graduate Studies in Mathematics, Vol. 112, American Mathematical Society, Providence, 2010. doi: 10.1090/gsm/112.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[19]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

 Impact Factor: 

Metrics

  • PDF downloads (68)
  • HTML views (139)
  • Cited by (0)

Other articles
by authors

[Back to Top]