September  2017, 7(3): 345-357. doi: 10.3934/naco.2017022

A type of new consensus protocol for two-dimension multi-agent systems

Institute of Automation, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

* Corresponding author: Zhang Yibo

The reviewing process of the paper was handled by Nanjing Huang as Guest Editors

Received  January 2016 Revised  June 2017 Published  July 2017

Fund Project: This work is supported by the National Natural Science Foundation of China (No. 61374083,61473264), Zhejiang Province Key Project of Science and Technology(No. 2014C03027), and Zhejiang Provincial Natural Science Foundation of China (No. LZ17F030002, LY17F030024).

A type of new consensus protocol for a two-dimension multi-agent system (MAS) is proposed. By introducing the conventional MAS and protocol, a dynamic equation of the first-order two-dimension MAS is proposed. then a new protocol with its Laplacian matrix is adopted. According to two types possible roots of character equations, two lemmas are proposed to show consensus asymptotical conditions. Furthermore, the convergence conditions of parameters are analyzed. Several simulated examples illustrate that consensus is achieved if the convergence conditions are satisfied.

Citation: Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022
References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549.  doi: 10.3724/SP.J.1004.2009.01541.  Google Scholar

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791.  doi: 10.1002/rnc.2800.  Google Scholar

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958.  doi: 10.1109/CDC.2003.812781.  Google Scholar

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523.  doi: 10.1109/TAC.2012.2208295.  Google Scholar

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777.  doi: 10.1109/TAC.2014.2309031.  Google Scholar

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268.  doi: 10.1109/TAC.2010.2042764.  Google Scholar

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033.  doi: 10.1002/rnc.1147.  Google Scholar

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365.  doi: 10.3724/SP.J.1004.2012.00357.  Google Scholar

show all references

References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549.  doi: 10.3724/SP.J.1004.2009.01541.  Google Scholar

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791.  doi: 10.1002/rnc.2800.  Google Scholar

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958.  doi: 10.1109/CDC.2003.812781.  Google Scholar

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523.  doi: 10.1109/TAC.2012.2208295.  Google Scholar

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777.  doi: 10.1109/TAC.2014.2309031.  Google Scholar

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268.  doi: 10.1109/TAC.2010.2042764.  Google Scholar

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033.  doi: 10.1002/rnc.1147.  Google Scholar

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365.  doi: 10.3724/SP.J.1004.2012.00357.  Google Scholar

Figure 1.  All possible of multiple results of $\bar{\mu} _{i\pm }$
Figure 2.  A digraph without leaders
Figure 3.  Simulation results 1 of condition (1) in Lemma 1
Figure 4.  Simulation results 2 of condition (1) in Lemma 1
Figure 5.  Simulation results 1 of condition (2) in Lemma 1
Figure 6.  Simulation results 2 of condition (2) in Lemma 1
Figure 7.  Simulation results 2 of condition (3) in Lemma 1
Figure 8.  Simulation results of condition (3) in Lemma 1
Figure 9.  Simulation results of condition (3) in Lemma 1
Figure 10.  Simulation results 1 of condition (1) in Lemma 2
Figure 11.  Simulation results 2 of condition (1) in Lemma 2
Figure 12.  Simulation results 1 of condition (2) in Lemma 2
Figure 13.  Simulation results 1 of condition (2) in Lemma 2
Figure 14.  Simulation results if Lemma 1 is not hold
Figure 15.  Simulation results if Lemma 2 is not hold
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[6]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[7]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043

[12]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[15]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[18]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[19]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[20]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]