\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An investigation of the most important factors for sustainable product development using evidential reasoning

  • * Corresponding author

    * Corresponding author 
This paper was prepared at the occasion of The 12th International Conference on Industrial Engineering (ICIE 2016), Tehran, Iran, January 25-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Assoc. Prof. A. (Nima) Mirzazadeh, Kharazmi University, Tehran, Iran, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey.
Abstract / Introduction Full Text(HTML) Figure(3) / Table(6) Related Papers Cited by
  • Those working in product development need to consider sustainability, being careful not to compromise the future generation's ability to satisfy its needs. Several strategies guide companies towards sustainability. This paper studies six of these strategies: eco-design, green design, cradle-to-cradle, design for environment, zero waste, and life cycle approaches. Based on a literature review and semi-structured interviews, it identifies 22 factors of sustainability from the perspective of manufacturers. The purpose is to determine which are the most important and to use them as a foundation for a new design strategy. A survey based on the 22 factors was given to people working with product development; they graded each factor by importance. The resulting qualitative data were analyzed using evidential reasoning. The analysis found the factors "minimize use of toxic substances, " "increase competitiveness, " "economic benefits, " "reduce material usage, " "material selection, " "reduce emissions, " and "increase product functionality" are more important and should serve as the foundation for a new approach to sustainable product development.

    Mathematics Subject Classification: Primary: 62C86, 62P12; Secondary: 90B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Generic framework to assess general property

    Figure 2.  Visual representation of ER steps

    Figure 3.  Diagram showing the importance of factors for sustainable product development

    Table 1.  Advantages and disadvantages of sustainable design strategies

    MethodAdvantagesDisadvantages
    Eco DesignIncreased competitiveness [13]
    Decreased variable costs [32], [36]
    Less use of toxic materials [32]
    Increased product functionality [36], [46]
    Improved economic performance [36]
    Increased revenue [13]
    Increased sales volumes [13]
    Less energy usage [32]
    Prolonged product life [32], [36], [46]
    Improved company image [13]
    Reduced material use [7], [24], [32], [36], [46]
    Increased fixed
    costs [36]
    Only short term
    economic benefits
    [36]
    Green
    design
    Optimized operational practices [5], [17], [19]
    Reduced use of non-renewable resources
    [3], [19], [34]
    Waste minimized [6], [19], [34]
    Increased use of renewable materials [3], [34]
    Increased use of renewable energy
    [3], [19], [34]
    Social business strategies incorporated [10]
    Requires investment
    in new operating
    tools [5]
    Too many unclear
    suggestions [6]
    Cradle-to-
    cradle
    Waste eliminated [8], [9], [33]
    Products are biodegradable [9]
    Eternal recyclability [9]
    Increased economic activity [9]
    Increased job opportunities [9]
    Certification available [33]
    Might be
    overconfident [4]
    Design for
    environment
    Waste is reduced [16], [45]
    Improved material chemistry [39]
    Improved design for disassembly [16], [39],
    [45]
    Increased recyclability [39], [45]
    Too many tools and
    techniques [45]
    Zero WastePollution is prevented [30], [55]
    Waste eliminated [18], [31], [55]
    Reduced toxicity [30], [55]
    Increased recyclability [18]
    Increased reuse of materials [55]
    Decreased costs of waste disposal
    [12], [18], [31]
    Increased revenue by selling used materials
    [14]
    Requires
    transformation of
    current systems [54]
    Increased short-
    term costs [14]
    Life-Cycle
    approaches
    Reduced long term environmental impact
    of the product [29], [38]
    Decreased costs for service [41]
    Increased environmental impact awareness
    [57]
    Holistic approach [4], [38], [57]
    Often used in
    retrospect [28], [38]
    Cannot be used
    properly for reused,
    recycled and re-
    manufactured
    products [41]
     | Show Table
    DownLoad: CSV

    Table 2.  Factors identified in sustainable design and the corresponding strategies

    FactorsDesign Strategy
    Reduce energy usageEco-design
    Reduce material usageEco-design, Life-cycle approaches
    Reduce use of non-renewable resourcesGreen design
    Reduce wasteDesign for Environment
    Eliminate wasteCradle-to-cradle, zero waste
    Eliminate emissionZero waste
    Minimize use of toxic substancesEco-design, zero waste
    Minimize wasteGreen design
    Recycle materials/componentsCradle-to-cradle, design for
    environment, zero waste, life-cycle
    approaches, eco-design
    Reuse materials/componentsZero waste, life-cycle approaches,
    eco-design, cradle-to-cradle
    Increase product functionalityEco-design
    Increase product lifespanEco-design
    Increase use of renewable energyGreen design, cradle-to-cradle
    Increase use of renewable materialsGreen design, life-cycle approaches,
    cradle-to-cradle
    Increase use of biodegradable materialsCradle-to-cradle
    Closed loop material flowCradle-to-cradle
    Holistic approachLife-cycle approaches, cradle-to-cradle
    Sustainable social standardsGreen design, cradle-to-cradle
    Economic benefitsEco-design, cradle-to-cradle, zero waste
    Increase competitivenessEco-design
     | Show Table
    DownLoad: CSV

    Table 3.  Assigned weights, belief degrees and calculated probability masses

    Evalutation GradeWeightBelief
    $H_1, H_2, H_3$ $\omega_i$ $\beta_{1, i}$ $\beta_{2, i}$ $\beta_{3, i}$ $\beta_{H}$
    $\varepsilon_1$0.350.40.500.1
    $\varepsilon_2$0.650.10.750.150
    Probability Mass
    $m_{1, i}$ $m_{2, i}$ $m_{3, i}$ $m_{H, i}$ $\bar{m}_{H, i}$ $\tilde{m}_{H, i}$
    0.140.17500.6850.650.035
    0.0650.48750.09750.350.350
     | Show Table
    DownLoad: CSV

    Table 4.  Factors identified in sustainable design and the corresponding strategies

    Evaluation grade (%)
    FactorsH1H2H3H4H5Unassigned
    Reduce energy usage51527241019
    Reduce material usage152231374
    Reduce use of non-renewable resources12121182316
    Reduce waste1428411016
    Reduce emissions1418382118
    Eliminate waste11143023139
    Eliminate emissions1052431822
    Minimize use of toxic substances008265016
    Minimize waste333037522
    Recycling components/ materials01729261810
    Reusing components/ materials11171234197
    Increase product functionality0229272616
    Increase product lifespan3193626142
    Increase use of renewable materials0820401022
    Increase use of renewable energy2820291922
    Increase use of biodegradable materials1133630515
    Sustainable material selection091547254
    Circular material flow072811549
    Holistic view469281637
    Sustainable social standards4321262026
    Economic benefits0126224011
    Increased competitiveness012731383
     | Show Table
    DownLoad: CSV

    Table 5.  Important design factors, relevant score and rank

    FactorsRanking score (%) Rank
    Minimize use of toxic substances821
    Increase competitiveness762
    Economic benefits753
    Reduce material usage744
    Sustainable material selection725
    Reduce emissions696
    Increase product functionality697
    Reduce waste648
    Increase use of renewable energy649
    Sustainable social standards6410
    Increase use of renewable materials6311
    Holistic view6212
    Recycling components/materials6113
    Reduce use of non-renewable resources6014
    Minimize waste5915
    Reusing components/materials5816
    Increase use of biodegradable materials5817
    Increase product lifespan5718
    Eliminate emissions5619
    Reduce energy usage5520
    Circular material flow5421
    Eliminate waste5322
     | Show Table
    DownLoad: CSV

    Table 6.  Important design factors and corresponding design strategy

    Most important identified factorsDesign strategy (%)
    Minimize use of toxics substances (82%)Eco-design and Zero waste
    Increased competitiveness (76%)Eco-design
    Economic benefits (75%)Eco-design, Cradle-to-cradle and Zero waste
    Reduce material usage (74%)Eco-design and life-cycle strategies
    Material selection (72%) $\cdots$
    Reduce emissions (69%) $\cdots$
    Increase product functionality (69%)Eco-design
     | Show Table
    DownLoad: CSV
  • [1] F. Ahmadszadeh and M. Bengtsson, Using evidential reasoning approach for prioritization of maintenance-related waste caused by human factors -a case study, Int. J. Adv. Manuf. Technol., 90 (2017), 2761-2775.  doi: 10.1007/s00170-016-9377-7.
    [2] F. Ahmadszadeh and M. Bengtsson, Classification of Maintenance-related Waste Based on Human Factors, Neuchatel, Switzerland, Conference on Operations, Management for Sustainable Competitveness (22nd EurOMA), 2015.
    [3] P. T. Anastas and J. B. Zimmerman, Through the 12 principles of green engineering, Environ. Sci. Technol, 1 (2003), 95-101.  doi: 10.1021/es032373g.
    [4] C. A. BakkerR. WeverC. Teoh and S. De Clerq, Designing cradle-to-cradle products: a reality check, Internat J. Sus. Eng., 3 (2010), 2-8.  doi: 10.1080/19397030903395166.
    [5] H. BaumannF. Boons and A Bragd, Mapping the green product development field: engineering, policy and business perspectives, J. Cleaner Prod., 10 (2002), 409-425.  doi: 10.1016/S0959-6526(02)00015-X.
    [6] G. BeheiryS. M. Beheiry and M. M. Beheiry, Investigating the use of green design parameters in UAE construction projects, Internat. J. Sus. Eng., 8 (2015), 93-101.  doi: 10.1080/19397038.2014.895066.
    [7] M. BorchardtM. H. WendtG. M. Pereira and M. A. Sellitto, Redesign of a component based on ecodesign practices: environmental impact and cost reduction achievements, J. Cleaner Prod., 19 (2011), 49-57.  doi: 10.1016/j.jclepro.2010.08.006.
    [8] M. Braungart and W. McDonough, Cradle to Cradle: Remaking the Way We Make Things, Vintage, London, 2008.
    [9] M. BraungartW. McDonough and A. Bollinger, Cradle-to-cradle design: creating healthy emissions: a strategy for eco-effective product and system design, J. Cleaner Prod., 15 (2007), 1337-1348.  doi: 10.1016/j.jclepro.2006.08.003.
    [10] S. ByggethG. Broman and K. H. Robert, A method for sustainable product development based on a modular, J. Cleaner Prod., 15 (2007), 1-11.  doi: 10.1016/j.jclepro.2006.02.007.
    [11] S. Byggeth and E. Hochschorner, Handling trade-offs in Ecodesign tools for sustainable product development and procurement, J. Cleaner Prod., 14 (2006), 1420-1430.  doi: 10.1016/j.jclepro.2005.03.024.
    [12] S. Case, Zeroing in on zero waste, Gov Procurement, 19 (2011), 24.
    [13] M. del Val Segarra-OñaM. De-Miguel-Molina and A. Payá-Martínez, A review of the literature on Eco-design in manufacturing industry: are institutions focusing on the key aspects?, Rev. Business Information Systems, 15 (2011), 61-67.  doi: 10.19030/rbis.v15i5.6028.
    [14] R. Docksai, A world without waste?, Futurist, 48 (2014), 16-20. 
    [15] J. Drexhage and D. Murphy, Sustainable Development: From Brundtland to Rio 2012, United Nations Headquarters, New York, 2010.
    [16] R. A. R. GhazillaN. SakundariniZ. TahaS. H. Abdul-Rashid and S. Yusoff, Design for environment and design for disassembly practices in Malaysia: a practitioner's perspectives, J. Cleaner Prod., 108 (2015), 331-342.  doi: 10.1016/j.jclepro.2015.06.033.
    [17] K. Gowri, Desktop tools for sustainable design, ASHRAE, 47 (2005), 42-46. 
    [18] P. L. Grogan, Zero waste: is ecotopia possible? BioCycle, 38 (1997), 86.
    [19] GSA U. S. General Services Administration, 2015. Available from: http://www.gsa.gov/portal/content/104462.
    [20] R. E. Hodgett, Comparison of multi-criteria decision-making methods for equipment selection, Int. J. Adv. Manuf. Technol., 85 (2016), 1-13.  doi: 10.1007/s00170-015-7993-2.
    [21] International Organization for Standardization, ISO 14000 family -Environmental management, Available at: https://www.iso.org/iso-14001-environmental-management.html
    [22] E. Jacquet-Lagreze and J. Siskos, Assessing a set of additive utility functions for multi-criteria decision making: the UTA method, Eur. J. Oper. Res., 10 (1982), 151-164.  doi: 10.1016/0377-2217(82)90155-2.
    [23] A. JayalF. BadurdeenO. Dillon Jr. and I Jawahir, Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels, CIRP JMST, 2 (2010), 144-152.  doi: 10.1016/j.cirpj.2010.03.006.
    [24] G. Johansson, Success factors for integration of ecodesign in product development, J. Environmental Management and Health, 13 (2002), 98-107.  doi: 10.1108/09566160210417868.
    [25] S. J. KimS. Kara and B. Kayis, Economic and environmental assessment of product life cycle, J. Cleaner Prod., 75 (2014), 75-85.  doi: 10.1016/j.jclepro.2014.03.094.
    [26] M. Kumar Mehlawat and P. Gupta, A new fuzzy group multicriteria decision making method with an application to the critical path selection, Int. J. Adv. Manuf. Technol., 83 (2016), 1281-1296.  doi: 10.1007/s00170-015-7610-4.
    [27] R. R. LekurwaleM. M. Akarte and D. N. Raut, Framework to evaluate manufacturing capability using analytical hierarchy process, Int. J. Adv. Manuf. Technol., 76 (2015), 565-576.  doi: 10.1007/s00170-014-6284-7.
    [28] F. Lemke and J. P. P Luzio, Exploring green consumers' mind-set toward green product design and life cycle assessment, J. Ind. Ecol., 18 (2014), 619-630.  doi: 10.1111/jiec.12123.
    [29] P. Llorach-MassanaR. Farreny and J. Oliver-Solá, Are cradle to cradle certified products environmentally preferable? Analysis from an LCA approach, J. Cleaner Prod., 93 (2015), 243-250.  doi: 10.1016/j.jclepro.2015.01.032.
    [30] E. Lombardi, Zero landfill is not zero waste, BioCycle, 52 (2011), 44-45. 
    [31] E. Lombardi and J. Goldstein, Before zero waste comes producer responsibility, In Business, 23 (2001), 28-29. 
    [32] C. Luttropp and J. Lagerstedt, Ecodesign and the ten golden rules: generic advice for merging environmental aspects into product development, J. Cleaner Prod., 14 (2006), 1396-1408.  doi: 10.1016/j.jclepro.2005.11.022.
    [33] W. McDonough and M. Braungart, Overview of the Cradle to Cradle Certified (CM) Product Standard -Version 3.0, Cradle to Cradle Products Innovation Institute, 2012.
    [34] Q. Meng, A rapid life cycle assessment method based on green features in supporting conceptual design, Int. J. of Precis Eng. and Manuf. -Green Tech., 2 (2014), 189-196.  doi: 10.1007/s40684-015-0023-x.
    [35] V. ParamasivamV. Senthil and N. Rajam Ramasamy, Decision making in equipment selection: an integrated approach with digraph and matrix approach, AHP and ANP, Int. J. Adv. Manuf. Technol., 54 (2011), 1233-1244.  doi: 10.1007/s00170-010-2997-4.
    [36] S. PlouffeP. LanoieC. Berneman and M. F. Vernier, Economic benefits tied to ecodesign, J. Cleaner Prod., 19 (2011), 573-579.  doi: 10.1016/j.jclepro.2010.12.003.
    [37] J. Pontus, L. Nordström and R. Lagerström, Formalizing analysis of enterprise architecture, in Enterprise Interoperability (eds. G. Doumeingts, J. M¨uller, G. Morel and B. Vallespir), Springer, London, (2007), 35–44. doi: 10.1007/978-1-84628-714-5_4.
    [38] S. PrendevilleD. F. O'Connor and L. Palmer, Barriers and benefits to Ecodesign: a case study of tool use in an SME, IEEE ISSST, (2011), 1-6.  doi: 10.1109/ISSST.2011.5936850.
    [39] M. RossiS. CharonG. Wing and J. Ewell, Design for the next generation -incorporating cradle-to-cradle design into Herman Miller products, J. Ind. Ecol., 10 (2006), 193-210.  doi: 10.1162/jiec.2006.10.4.193.
    [40] G. A. Shafer, Mathematical Theory of Evidence, Princeton University Press, 1976.
    [41] Y. UmedaA. Nonomura and T. Tomiyama, Study on life-cycle design for the post mass production paradigm, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, (2000), 149-161. 
    [42] United Nations Department of Economic and Social Affairs, 17 sustainable development goals, 17 partnerships, 2015. Available at: https://sustainabledevelopment.un.org/content/documents/211617%20Goals%2017%20Partnerships.pdf
    [43] United Nations Goal 12: ensure sustainable consumption and production patterns, 2015. Available at: http://www.un.org/sustainabledevelopment/sustainable-consumption-production/
    [44] J. C. van Weenen, Towards sustainable product development, J. Cleaner Prod., 3 (1995), 95-100.  doi: 10.1016/0959-6526(95)00062-J.
    [45] N. Vargas HernandezG. Okudan KremerL. C. Scmidt and P. R. Acosta Herrera, Development of an expert system to aid engineers in the selection of design for environment methods and tools, Expert Systems with Applications, 39 (2012), 9543-9553.  doi: 10.1016/j.eswa.2012.02.098.
    [46] W. Wimmer, R. Züst and L. Kun-Mo, Ecodesign Implementation: A Systematic Guidance on Integrating Environmental Considerations into Product Development, Springer, Dordrecht, 2004.
    [47] World Comission on Environment and Development (WCED), Our Common Future, Oxford University Press, New York, 1987.
    [48] L. Xu and J. B. Yang, Introduction to multi-criteria decision making and the evidential reasoning approach, Manchester School of Management, Working Paper, 2001.
    [49] D. L. Xu, An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis, Ann. Oper. Res., 195 (2012), 163-187.  doi: 10.1007/s10479-011-0945-9.
    [50] D. L. Xu and and J. B. Yang, Intelligent decision system for self-assessment, J. Multi-Criteria Decision Anal., 12 (2003), 43-60.  doi: 10.1002/mcda.343.
    [51] J. B. Yang and M. G. Singh, An evidential reasoning approach for multiple attribute decision making with uncertainty, IEEE Trans. Syst., Man and Cypernetics, 24 (1994), 1-18.  doi: 10.1109/21.259681.
    [52] J. B. Yang, Rule and utility based evidential reasoning approach for multi-attribute decision analysis under uncertainties, Eur. J. Oper. Res., 131 (2001), 31-61.  doi: 10.1016/S0377-2217(99)00441-5.
    [53] J. B. Yang and D. L. Xu, On the evidential reasoning algorithm for multi-attribute decision analysis under uncertainty, IEEE Trans. Syst., Man and Cypernetics, Part A. Systems and Humans, 32 (2002), 289-304.  doi: 10.1109/TSMCA.2002.802746.
    [54] A. U. Zaman, A comprehensive review of the development of zero waste management: lessons learned and guidelines, J. Cleaner Prod., 91 (2005), 12-25.  doi: 10.1016/j.jclepro.2014.12.013.
    [55] Zero Waste International Alliance, ZW definition: Zero Waste International Alliance, 2015. Available at: http://zwia.org/standards/zw-definition/
    [56] Z. J. ZhangJ. B. Yang and D. L. Xu, A hierarchical analysis model for multi-objective decision making, IFAC Proceedings Volumes, 22 (1989), 13-18. 
    [57] M. Öberg, Integrated Life Cycle Design -Applied to Concrete Multi-Dwelling Buildings, Doctoral thesis, Div of Building Materials LTH, Lund University, 2005.
  • 加载中

Figures(3)

Tables(6)

SHARE

Article Metrics

HTML views(2413) PDF downloads(195) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return