[1]
|
S. Arora and S. Khot, Fitting algebraic curves to noisy data, Journal of Computer and System Sciences, 67 (2003), 325-340.
doi: 10.1016/S0022-0000(03)00012-6.
|
[2]
|
K. Atkinson,
An Introduction to Numerical Analysis, second ed., Wiley, 1989.
|
[3]
|
E. Babolian, M. MasjedJamei and M. R. Eslahchi, On numerical improvement of Gauss-Legendre quadrature rule, Applied Mathematics and Computation, 160 (2005), 779-789.
doi: 10.1016/j.amc.2003.11.031.
|
[4]
|
R. L. Burden and J. Douglas Faires,
Numerical Analysis, Seventh ed., Thomson Learning, 2001.
|
[5]
|
F. Cazals and M. Pouget, Estimating differential quantities using polynomial fitting of osculating jets, Computer Aided Geometric Design, 22 (2005), 121-146.
doi: 10.1016/j.cagd.2004.09.004.
|
[6]
|
Hamza Chaggara and Wolfram Koepf, On linearization and connection coefficients for generalized Hermite polynomials, Journal of Computational and Applied Mathematics, 236 (2011), 65-73.
doi: 10.1016/j.cam.2011.03.010.
|
[7]
|
W. N. Everitta, K. H. Kwonb, L. L. Littlejohnc and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, Journal of Computational and Applied Mathematics, 133 (2001), 85-109.
doi: 10.1016/S0377-0427(00)00636-1.
|
[8]
|
G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), 206-216.
doi: 10.1007/BF01436075.
|
[9]
|
G. H. Golub, Matrix decompositions and statistical calculations, in Statistical Computations
(eds. R. C. Milton, J. A. Nedler), Academic Press, New York, (1969), 365–397.
|
[10]
|
S. M. Hashemiparast, Numerical integration using local Taylor expansions in nodes, Applied Mathematics and Computation, 192 (2007), 332-336.
doi: 10.1016/j.amc.2007.03.009.
|
[11]
|
Siraj-ul-Islam, Imran Aziz and Fazal Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions, Computers and Mathematics with Applications, 59 (2010), 2026-2036.
doi: 10.1016/j.camwa.2009.12.005.
|
[12]
|
Ana Marco and José-Javier Martínez, Polynomial least squares fitting in the Bernstein basis, Linear Algebra and its Applications, 433 (2010), 1254-1264.
doi: 10.1016/j.laa.2010.06.031.
|
[13]
|
Luis J. Morales-Mendoza, Hamurabi Gamboa-Rosales and Yuriy S. Shmaliy, A new class of discrete orthogonal polynomials for blind fitting of finite data, Signal Processing, 93 (2013), 1785-1793.
|
[14]
|
Tomasz Pander, New polynomial approach to myriad filter computation, Signal Processing, 90 (2010), 1991-2001.
|
[15]
|
C. F. So, S. C. Ng and S. H. Leung, Gradient based variable forgetting factor RLS algorithm, Signal Processing, 83 (2003), 1163-1175.
doi: 10.1109/TSP.2005.851110.
|
[16]
|
Peter Strobach, Solving cubics by polynomial fitting, Journal of Computational and Applied Mathematics, 235 (2011), 3033-3052.
doi: 10.1016/j.cam.2010.12.025.
|
[17]
|
Peter Strobach, A fitting algorithm for real coefficient polynomial rooting, Journal of Computational and Applied Mathematics, 236 (2012), 3238-3255.
doi: 10.1016/j.cam.2012.02.027.
|
[18]
|
Li-yun Su, Prediction of multivariate chaotic time series with local polynomial fitting, Computers and Mathematics with Applications, 59 (2010), 737-744.
doi: 10.1016/j.camwa.2009.10.019.
|
[19]
|
Yegui Xiao, Liying Ma and Rabab Kreidieh Ward, Fast RLS Fourier analyzers capable of accommodating frequency mismatch, Signal Processing, 87 (2007), 2197-2212.
|
[20]
|
Zhe-zhao Zeng and Xu Zhou, A neural-network method based on RLS algorithm for solving special linear systems of equations, Journal of Computational Information Systems, 8 (2012), 2915-2920.
|