\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A study of numerical integration based on Legendre polynomial and RLS algorithm

  • * Corresponding author: Wen Tan

    * Corresponding author: Wen Tan 

The reviewing process of the paper was handled by Nanjing Huang as Guest Editors

The first author is supported by The National Natural Science Foundation of China (41201468) and The National Nonprofit Industry Research (201510003-5).
Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • A quadrature rule based on Legendre polynomial functions is proposed to find approximate values of definite integrals in this paper. This method uses recursive least squares (RLS) algorithm to compute coefficients of Legendre polynomial fitting functions, and then approximately computes values of definite integrals by using obtained the coefficients. The main advantage of this approach is its efficiency and simple applicability. Finally some examples are given to test the convergence and accuracy of the method.

    Mathematics Subject Classification: Primary: 65D10, 65D30; Secondary: 42C10, 93E24.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The calculation results

    examplesThis proposed methodrer of Hybrid[20]
    1rer
    Example 10.321970599192823.7271e-179.6947e-13
    Example 226.083287714147141.4155e-163.7148e-14
    Example 30.341962491330271.8001e-113.7947e-8
     | Show Table
    DownLoad: CSV
  • [1] S. Arora and S. Khot, Fitting algebraic curves to noisy data, Journal of Computer and System Sciences, 67 (2003), 325-340.  doi: 10.1016/S0022-0000(03)00012-6.
    [2] K. Atkinson, An Introduction to Numerical Analysis, second ed., Wiley, 1989.
    [3] E. BabolianM. MasjedJamei and M. R. Eslahchi, On numerical improvement of Gauss-Legendre quadrature rule, Applied Mathematics and Computation, 160 (2005), 779-789.  doi: 10.1016/j.amc.2003.11.031.
    [4] R. L. Burden and J. Douglas Faires, Numerical Analysis, Seventh ed., Thomson Learning, 2001.
    [5] F. Cazals and M. Pouget, Estimating differential quantities using polynomial fitting of osculating jets, Computer Aided Geometric Design, 22 (2005), 121-146.  doi: 10.1016/j.cagd.2004.09.004.
    [6] Hamza Chaggara and Wolfram Koepf, On linearization and connection coefficients for generalized Hermite polynomials, Journal of Computational and Applied Mathematics, 236 (2011), 65-73.  doi: 10.1016/j.cam.2011.03.010.
    [7] W. N. EverittaK. H. KwonbL. L. Littlejohnc and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, Journal of Computational and Applied Mathematics, 133 (2001), 85-109.  doi: 10.1016/S0377-0427(00)00636-1.
    [8] G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), 206-216.  doi: 10.1007/BF01436075.
    [9] G. H. Golub, Matrix decompositions and statistical calculations, in Statistical Computations (eds. R. C. Milton, J. A. Nedler), Academic Press, New York, (1969), 365–397.
    [10] S. M. Hashemiparast, Numerical integration using local Taylor expansions in nodes, Applied Mathematics and Computation, 192 (2007), 332-336.  doi: 10.1016/j.amc.2007.03.009.
    [11] Siraj-ul-IslamImran Aziz and Fazal Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions, Computers and Mathematics with Applications, 59 (2010), 2026-2036.  doi: 10.1016/j.camwa.2009.12.005.
    [12] Ana Marco and José-Javier Martínez, Polynomial least squares fitting in the Bernstein basis, Linear Algebra and its Applications, 433 (2010), 1254-1264.  doi: 10.1016/j.laa.2010.06.031.
    [13] Luis J. Morales-MendozaHamurabi Gamboa-Rosales and Yuriy S. Shmaliy, A new class of discrete orthogonal polynomials for blind fitting of finite data, Signal Processing, 93 (2013), 1785-1793. 
    [14] Tomasz Pander, New polynomial approach to myriad filter computation, Signal Processing, 90 (2010), 1991-2001. 
    [15] C. F. SoS. C. Ng and S. H. Leung, Gradient based variable forgetting factor RLS algorithm, Signal Processing, 83 (2003), 1163-1175.  doi: 10.1109/TSP.2005.851110.
    [16] Peter Strobach, Solving cubics by polynomial fitting, Journal of Computational and Applied Mathematics, 235 (2011), 3033-3052.  doi: 10.1016/j.cam.2010.12.025.
    [17] Peter Strobach, A fitting algorithm for real coefficient polynomial rooting, Journal of Computational and Applied Mathematics, 236 (2012), 3238-3255.  doi: 10.1016/j.cam.2012.02.027.
    [18] Li-yun Su, Prediction of multivariate chaotic time series with local polynomial fitting, Computers and Mathematics with Applications, 59 (2010), 737-744.  doi: 10.1016/j.camwa.2009.10.019.
    [19] Yegui XiaoLiying Ma and Rabab Kreidieh Ward, Fast RLS Fourier analyzers capable of accommodating frequency mismatch, Signal Processing, 87 (2007), 2197-2212. 
    [20] Zhe-zhao Zeng and Xu Zhou, A neural-network method based on RLS algorithm for solving special linear systems of equations, Journal of Computational Information Systems, 8 (2012), 2915-2920. 
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(2206) PDF downloads(670) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return