[1]
|
K. Barkalov and V. Gergel, Multilevel scheme of dimensionality reduction for parallel global search algorithms, in Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, (2014), 2111-2124.
|
[2]
|
K. Barkalov and V. Gergel, Parallel global optimization on GPU, J. Glob. Optim., 66 (2016), 3-20.
doi: 10.1007/s10898-016-0411-y.
|
[3]
|
K. Barkalov, V. Gergel and I. Lebedev, Use of Xeon Phi coprocessor for solving global optimization problems, LNCS, 9251 (2015), 307-318.
doi: 10.1007/978-3-319-21909-7_31.
|
[4]
|
K. Barkalov, V. Gergel, I. Lebedev and A. Sysoev, Solving the global optimization problems on heterogeneous cluster systems, CEUR Workshop Proceedings, 1482 (2015), 411-419.
|
[5]
|
K. Barkalov, A. Polovinkin, I. Meyerov, S. Sidorov and N. Zolotykh, SVM regression parameters optimization using parallel global search algorithm, LNCS, 7979 (2013), 154-166.
doi: 10.1007/978-3-642-39958-9_14.
|
[6]
|
M. R. Bussieck and A. Meeraus, General algebraic modeling system (GAMS), in Modeling Languages in Mathematical Optimization (ed. J. Kallrath), Springer, (2004), 137-157.
doi: 10.1007/978-1-4613-0215-5_8.
|
[7]
|
Y. Censor and S. A. Zenios,
Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, 1998.
|
[8]
|
R. Čiegis, D. Henty, B. Kågström and J. Žilinskas,
Parallel Scientific Computing and Optimization: Advances and Applications, Springer, 2009.
doi: 10.1007/978-0-387-09707-7.
|
[9]
|
I. N. Egorov, G. V. Kretinin, I. A. Leshchenko and S. V. Kuptzov, IOSO optimization toolkit — novel software to create better design, in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002. Available from http://www.iosotech.com/text/2002_4329.pdf.
|
[10]
|
D. Famularo, P. Pugliese and Y. D. Sergeyev, A global optimization technique for checking parametric robustness, Automatica, 35 (1999), 1605-1611.
doi: 10.1016/S0005-1098(99)00058-8.
|
[11]
|
G. Fasano and J. D. Pintér,
Modeling and Optimization in Space Engineering, Springer, 2013.
doi: 10.1007/978-1-4614-4469-5.
|
[12]
|
C. A. Floudas and M. P. Pardalos,
State of the Art in Global Optimization: Computational Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
doi: 10.1007/978-1-4613-3437-8.
|
[13]
|
C. A. Floudas and M. P. Pardalos,
Recent Advances in Global Optimization, Princeton University Press, 2016.
doi: 10.1007/s10898-008-9332-8.
|
[14]
|
J. M. Gablonsky and C. T. Kelley, A locally-biased form of the DIRECT algorithm, J. Glob. Optim., 21 (2001), 27-37.
doi: 10.1023/A:1017930332101.
|
[15]
|
M. Gaviano, D. E. Kvasov, D. Lera and Y. D. Sergeev, Software for generation of classes of test functions with known local and global minima for global optimization, ACM Trans. Math. Software, 29 (2003), 469-480.
doi: 10.1145/962437.962444.
|
[16]
|
V. Gergel and I. Lebedev, Heterogeneous parallel computations for solving global optimization problems, Procedia Comput. Sci., 66 (2015), 53-62.
doi: 10.1016/j.procs.2015.11.008.
|
[17]
|
V. Gergel, A software system for multi-extremal optimization, Eur. J. Oper. Res., 65 (1993), 305-313.
|
[18]
|
V. Gergel, A method for using derivatives in the minimization of multiextremum functions, Comput. Math. Math. Phys., 36 (1996), 729-742.
|
[19]
|
V. Gergel, A global optimization algorithm for multivariate functions with Lipschitzian first derivatives, J. Glob. Optim., 10 (1997), 257-281.
doi: 10.1023/A:1008290629896.
|
[20]
|
V. Gergel, et al., High performance computing in biomedical applications, Procedia Computer Science, 18 (2013), 10-19.
doi: 10.1016/j.procs.2013.05.164.
|
[21]
|
V. Gergel, et al., Recognition of surface defects of cold-rolling sheets based on method of localities, International Review of Automatic Control, 8 (2015), 51-55.
doi: 10.15866/ireaco.v8i1.4935.
|
[22]
|
V. Gergel and S. Sidorov, A two-level parallel global search algorithm for solving computationally intensive multi-extremal optimization problems, LNCS, 9251 (2015), 505-515.
doi: 10.1007/978-3-319-21909-7_49.
|
[23]
|
V. A. Grishagin and R. G. Strongin, Optimization of multi-extremal functions subject to monotonically unimodal constraints, Engineering Cybernetics, 5 (1984), 117-122.
|
[24]
|
K. Holmstrm and M. M. Edvall, The TOMLAB optimization environment, Modeling Languages in Mathematical Optimization, Springer, (2004), 369-376.
doi: 10.1007/978-1-4613-0215-5_19.
|
[25]
|
R. Horst and H. Tuy,
Global Optimization: Deterministic Approaches, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-662-03199-5.
|
[26]
|
D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), 157-181.
doi: 10.1007/BF00941892.
|
[27]
|
R. B. Kearfott, GlobSol user guide, Optim. Methods Softw., 24 (2009), 687-708.
doi: 10.1080/10556780802614051.
|
[28]
|
D. E. Kvasov and Y. D. Sergeyev, Deterministic approaches for solving practical black-box global optimization problems, Adv. Eng. Softw., 80 (2015), 58-66.
doi: 10.1016/j.advengsoft.2014.09.014.
|
[29]
|
D. E. Kvasov, D. Menniti, A. Pinnarelli, Y. D. Sergeyev and N. Sorrentino, Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions, Electric Power Systems Research, 78 (2008), 1217-1229.
doi: 10.1016/j.epsr.2007.10.009.
|
[30]
|
D. E. Kvasov, C. Pizzuti and Y. D. Sergeyev, Local tuning and partition strategies for diagonal GO methods, Numerische Mathematik, 94 (2003), 93-106.
doi: 10.1007/s00211-002-0419-8.
|
[31]
|
L. Liberti, Writing global optimization software, in Nonconvex Optimization and Its Applications, Springer, 84 (2006), 211-262.
doi: 10.1007/0-387-30528-9_8.
|
[32]
|
Y. Lin and L. Schrage, The global solver in the LINDO API, Optim. Methods Softw., 24 (2009), 657-668.
doi: 10.1080/10556780902753221.
|
[33]
|
M. Locatelli and F. Schoen,
Global Optimization: Theory, Algorithms and Applications, SIAM, 2013.
doi: 10.1137/1.9781611972672.
|
[34]
|
G. Luque and E. Alba,
Parallel Genetic Algorithms. Theory and Real World Applications, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-22084-5.
|
[35]
|
M. Mongeau, H. Karsenty, V. Rouzé and J. B. Hiriart-Urruty, Comparison of public-domain software for black box global optimization, Optim. Methods Softw., 13 (2000), 203-226.
doi: 10.1080/10556780008805783.
|
[36]
|
K. M. Mullen, Continuous global optimization in R,
J. Stat. Softw. , 60 (2014).
doi: 10.18637/jss.v060.i06.
|
[37]
|
M. P. Pardalos, A. A. Zhigljavsky and J. Žilinskas,
Advances in Stochastic and Deterministic Global Optimization, Springer, 2016.
doi: 10.1007/978-3-319-29975-4.
|
[38]
|
J. D. Pintér,
Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications), Kluwer Academic Publishers, Dordrecht, 1996.
doi: 10.1007/978-1-4757-2502-5.
|
[39]
|
J. D. Pintér, Software development for global optimization, Lectures on Global Optimization. Fields Institute Communications, 55 (2009), 183-204.
|
[40]
|
L. M. Rios and N. V. Sahinidis, Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Glob. Optim., 56 (2013), 1247-1293.
doi: 10.1007/s10898-012-9951-y.
|
[41]
|
N. V. Sahinidis, BARON: A general purpose global optimization software package, J. Glob. Optim., 8 (1996), 201-205.
doi: 10.1007/BF00138693.
|
[42]
|
Y. D. Sergeyev, An information global optimization algorithm with local tuning, SIAM J. Optim., 5 (1995), 858-870.
doi: 10.1137/0805041.
|
[43]
|
Y. D. Sergeyev, Multidimensional global optimization using the first derivatives, Comput. Math. Math. Phys., 39 (1999), 743-752.
|
[44]
|
Y. D. Sergeyev and D. E. Kvasov, Global search based on efficient diagonal partitions and a set of Lipschitz constants, SIAM Journal on Optimization, 16 (2006), 910-937.
doi: 10.1137/040621132.
|
[45]
|
Y. D. Sergeyev and V. A. Grishagin, Parallel asynchronous global search and the nested optimization scheme, J. Comput. Anal. Appl., 3 (2001), 123-145.
doi: 10.1023/A:1010185125012.
|
[46]
|
Y. D. Sergeyev, R. G. Strongin and D. Lera,
Introduction to Global Optimization Exploiting Space-filling Curves, Springer, 2013.
doi: 10.1007/978-1-4614-8042-6.
|
[47]
|
Y. D. Sergeyev, D. Famularo and P. Pugliese, Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints, J. Glob. Optim., 21 (2001), 317-341.
doi: 10.1023/A:1012391611462.
|
[48]
|
R. G. Strongin,
Numerical Methods in Multi-Extremal Problems (Information-Statistical Algorithms), Moscow: Nauka, In Russian, 1978.
|
[49]
|
R. G. Strongin, Algorithms for multi-extremal mathematical programming problems employing a set of joint space-filling curves, J. Glob. Optim., 2 (1992), 357-378.
doi: 10.1007/BF00122428.
|
[50]
|
R. G. Strongin, V. P. Gergel, V. A. Grishagin and K. A. Barkalov,
Parallel Computations for Global Optimization Problems, Moscow State University (In Russian), Moscow, 2013.
|
[51]
|
R. G. Strongin and Y. D. Sergeyev,
Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms, Kluwer Academic Publishers, Dordrecht (2000, 2nd ed. 2013, 3rd ed. 2014).
doi: 10.1007/978-1-4615-4677-1.
|
[52]
|
A. Törn and A. Žilinskas,
Global Optimization, Springer, 1989.
doi: 10.1007/3-540-50871-6.
|
[53]
|
P. Venkataraman,
Applied Optimization with MATLAB Programming, John Wiley & Sons, 2009.
|
[54]
|
A. A. Zhigljavsky,
Theory of Global Random Search, Kluwer Academic Publishers, Dordrecht, 1991.
doi: 10.1007/978-94-011-3436-1.
|