|
F. Alizadeh, Combinatorial Optimization with Interior-Point Methods and Semi-definite Matrices, Ph. D. thesis, Computer Science Department, University of Minnesota, Minneapolis, MN, 1991.
|
|
F. Alizadeh
, Interior-point methods in semidefinite programming with applications to combinatorial optimization, SIAM J. Optim., 5 (1995)
, 13-51.
doi: 10.1137/0805002.
|
|
F. Alizadeh
, J.A. Haeberly
and M. L. Overton
, Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results, SIAM J. Optim., 8 (1998)
, 746-768.
doi: 10.1137/S1052623496304700.
|
|
S. Boyd, L. Ghoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777.
|
|
E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 2002.
doi: 10.1007/b105286.
|
|
D. Herbison-Evans, Solving quartics and cubics for graphics Technical Report, R94-487, Basser Department of Computer Science, University of Sydney, Sydney, Australia, 1994.
doi: 10.1016/B978-0-12-543457-7.50009-7.
|
|
B. Kheirfam
, An arc-search interior point method in the $\mathcal{N}_{∞}^-$ neighborhood for symmetric optimization, Fundam. Inform., 146 (2016)
, 255-269.
doi: 10.3233/FI-2016-1385.
|
|
M. Kojima
, S. Shindoh
and S. Hara
, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997)
, 86-125.
doi: 10.1137/S1052623494269035.
|
|
M. Kojima
, M. Shida
and S. Shindoh
, Local convergence of predictor-corrector infeasible interior-point algorithm for SDPs and SDLCPs, Math. Program., 80 (1998)
, 129-160.
doi: 10.1007/BF01581723.
|
|
Y. Li
and T. Terlaky
, A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with $O(\sqrt{n}\log(\frac{{\rm tr}(X^0S^0)}{ε}))$ iteration complexity, SIAM J. Optim., 8 (2010)
, 2853-2875.
doi: 10.1137/080729311.
|
|
H. W. Liu
, C. H. Liu
and X. M. Yang
, New complexity analysis of a Mehrotra-type predictor-corrector algorithm for semidefinite programming, Optim. Methods Softw., 28 (2013)
, 1179-1194.
doi: 10.1080/10556788.2012.679270.
|
|
S. Mizuno
, M. J. Todd
and Y. Ye
, On adaptive-step primal-dual interior-point algorithms for linear programming, Math. Oper. Res., 18 (1993)
, 964-981.
doi: 10.1287/moor.18.4.964.
|
|
R. D. C. Monteiro
and I. Adler
, Interior path following primal-dual algorithm. Part Ⅰ: linear programming, Math. Program., 44 (1989)
, 27-41.
doi: 10.1007/BF01587075.
|
|
R. D. C. Monteiro
, Polynomial convergence of primal-dual algorithms for semidefinite programming based on the Monteiro and Zhang family of directions, SIAM J. Optim., 8 (1998)
, 797-812.
doi: 10.1137/S1052623496308618.
|
|
R. D. C. Monteiro
and Y. Zhang
, A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming, Math. Program., 81 (1998)
, 281-299.
doi: 10.1007/BF01580085.
|
|
Y. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, Vol. 13 SIAM, Philadelphia, USA, 1994.
doi: 10.1137/1.9781611970791.
|
|
Y. E. Nesterov
and M. J. Todd
, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997)
, 1-42.
doi: 10.1287/moor.22.1.1.
|
|
Y. E. Nesterov
and M. J. Todd
, Primal-dual interior point methods for self-scaled cones, SIAM J. Optim., 8 (1998)
, 324-364.
doi: 10.1137/S1052623495290209.
|
|
F. A. Potra
and R. Sheng
, A superlinearly convergent primal-dual infeasible -interior-point algorithm for semidefinite programming, SIAM J. Optim., 8 (1998)
, 1007-1028.
doi: 10.1137/S1052623495294955.
|
|
M. J. Todd
, K. C. Toh
and R. H. $T\ddot u\ddot unc\ddot u$
, On the Nesterov-Todd direction in semidefinite programming, SIAM J. Optim., 8 (1998)
, 769-796.
doi: 10.1137/S105262349630060X.
|
|
S. Veeraraghavan
and D. A. Mazziotti
, Semidefinite programming formulation of linear-scaling electronic structure theories Artic, Phys. Rev. A, 92 (2015)
, 215-220.
|
|
H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, International Series in Operations Research and Management Science (27) Kluwer Academic Publishers, Boston, MA, 2000.
doi: 10.1007/978-1-4615-4381-7.
|
|
S. Wright, Primal-Dual Interior-point Methods, SIAM, Philadelphia, 1997.
doi: 10.1137/1.9781611971453.
|
|
Y. Yang, Arc-search path-following interior-point algorithm for linear programming, Optimization online, 2009.
|
|
Y. Yang
, A polynomial arc-search interior-point algorithm for convex quadratic programming, Eur. J. Oper. Res., 215 (2011)
, 25-38.
doi: 10.1016/j.ejor.2011.06.020.
|
|
Y. Yang
, A polynomial arc-search interior-point algorithm for linear programming, J. Optim. Theory Appl., 158 (2013)
, 859-873.
doi: 10.1007/s10957-013-0281-0.
|
|
X. Yang
, Y. Zhang
and H. Liu
, A wide neighborhood infeasible-interior-point method with arc-search for linear programming, J. Appl. Math. Comput., 51 (2016)
, 209-225.
doi: 10.1007/s12190-015-0900-z.
|
|
X. Yang
, H. Liu
and Y. Zhang
, An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path, Optim. Lett., 11 (2017)
, 135-152.
doi: 10.1007/s11590-016-0997-5.
|
|
Y. Zhang
, On extending primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM J. Optim., 8 (1998)
, 365-386.
doi: 10.1137/S1052623495296115.
|