September  2018, 8(3): 277-289. doi: 10.3934/naco.2018017

Construction and research of adequate computational models for quasilinear hyperbolic systems

1. 

National University of Uzbekistan, Faculty of Mathematics, 4, Universitetskaya str., Tashkent, Uzbekistan

2. 

Sobolev Institute of Mathematics, 4, Acad. Koptyug str., Novosibirsk, Russia

* Corresponding author: Aloev Rakhmatillo, aloev@mail.ru

Received  April 2017 Revised  October 2017 Published  June 2018

In the paper, we study a class of three-dimensional quasilinear hyperbolic systems. For such system, we set the initial boundary value problem and construct the energy integral. We construct the difference scheme and obtain an a priori estimate for its solution.

Citation: Aloev Rakhmatillo, Khudoyberganov Mirzoali, Blokhin Alexander. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 277-289. doi: 10.3934/naco.2018017
References:
[1]

R. D. AloevZ. K. EshkuvatovSh. O. Davlatov and N. M. A. Nik Long, Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients, Computers and Mathematics with Applications, 68 (2014), 1194-1204.  doi: 10.1016/j.camwa.2014.08.019.

[2]

R. D. AloevA. M. Blokhin and M. U. Hudayberganov, One class of stable difference schemes for hyperbolic system, American Journal of Numerical Analysis, 2 (2014), 85-89. 

[3]

A. M. Blokhin and R. D. Aloev, Energy Integrals and Their Applications to Investigation of Stability of Difference Schemes, Novosibirsk, 1993. 224 p(in Russian).

[4]

S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian).

[5]

S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521–523. (in Russian).

[6]

S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer-Verlag, New York, 2003. doi: 10.1007/978-1-4757-5117-8.

[7]

A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comp. Phys., 49 (1983), 151-164.  doi: 10.1016/0021-9991(83)90118-3.

[8]

A. I. Vol'pert and S. I. Khudyaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sb., 16 (1972), 517-544.  doi: 10.1070/SM1972v016n04ABEH001438.

[9]

Yu. S. Zavyalov, B. I. Kvasov and V. L. Miroshnichenko, Methods of Spline Functions, Moscow, Nauka, 1980 (in Russian).

show all references

References:
[1]

R. D. AloevZ. K. EshkuvatovSh. O. Davlatov and N. M. A. Nik Long, Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients, Computers and Mathematics with Applications, 68 (2014), 1194-1204.  doi: 10.1016/j.camwa.2014.08.019.

[2]

R. D. AloevA. M. Blokhin and M. U. Hudayberganov, One class of stable difference schemes for hyperbolic system, American Journal of Numerical Analysis, 2 (2014), 85-89. 

[3]

A. M. Blokhin and R. D. Aloev, Energy Integrals and Their Applications to Investigation of Stability of Difference Schemes, Novosibirsk, 1993. 224 p(in Russian).

[4]

S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian).

[5]

S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521–523. (in Russian).

[6]

S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer-Verlag, New York, 2003. doi: 10.1007/978-1-4757-5117-8.

[7]

A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comp. Phys., 49 (1983), 151-164.  doi: 10.1016/0021-9991(83)90118-3.

[8]

A. I. Vol'pert and S. I. Khudyaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sb., 16 (1972), 517-544.  doi: 10.1070/SM1972v016n04ABEH001438.

[9]

Yu. S. Zavyalov, B. I. Kvasov and V. L. Miroshnichenko, Methods of Spline Functions, Moscow, Nauka, 1980 (in Russian).

Figure 1.  Numerical solution by scheme with limiter (40)
Figure 2.  Line is exact solution, point-numerical solution by scheme (40)
[1]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[2]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353

[3]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[4]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic and Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[5]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2441-2474. doi: 10.3934/cpaa.2021049

[6]

Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022045

[7]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[8]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[9]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[10]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[11]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[12]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[13]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[14]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[15]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[16]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[17]

Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks and Heterogeneous Media, 2008, 3 (1) : 1-41. doi: 10.3934/nhm.2008.3.1

[18]

Allaberen Ashyralyev. Well-posedness of the modified Crank-Nicholson difference schemes in Bochner spaces. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 29-51. doi: 10.3934/dcdsb.2007.7.29

[19]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[20]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

 Impact Factor: 

Metrics

  • PDF downloads (206)
  • HTML views (374)
  • Cited by (0)

[Back to Top]