September  2018, 8(3): 277-289. doi: 10.3934/naco.2018017

Construction and research of adequate computational models for quasilinear hyperbolic systems

1. 

National University of Uzbekistan, Faculty of Mathematics, 4, Universitetskaya str., Tashkent, Uzbekistan

2. 

Sobolev Institute of Mathematics, 4, Acad. Koptyug str., Novosibirsk, Russia

* Corresponding author: Aloev Rakhmatillo, aloev@mail.ru

Received  April 2017 Revised  October 2017 Published  June 2018

In the paper, we study a class of three-dimensional quasilinear hyperbolic systems. For such system, we set the initial boundary value problem and construct the energy integral. We construct the difference scheme and obtain an a priori estimate for its solution.

Citation: Aloev Rakhmatillo, Khudoyberganov Mirzoali, Blokhin Alexander. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 277-289. doi: 10.3934/naco.2018017
References:
[1]

R. D. AloevZ. K. EshkuvatovSh. O. Davlatov and N. M. A. Nik Long, Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients, Computers and Mathematics with Applications, 68 (2014), 1194-1204. doi: 10.1016/j.camwa.2014.08.019. Google Scholar

[2]

R. D. AloevA. M. Blokhin and M. U. Hudayberganov, One class of stable difference schemes for hyperbolic system, American Journal of Numerical Analysis, 2 (2014), 85-89. Google Scholar

[3]

A. M. Blokhin and R. D. Aloev, Energy Integrals and Their Applications to Investigation of Stability of Difference Schemes, Novosibirsk, 1993. 224 p(in Russian). Google Scholar

[4]

S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian). Google Scholar

[5]

S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521–523. (in Russian). Google Scholar

[6]

S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer-Verlag, New York, 2003. doi: 10.1007/978-1-4757-5117-8. Google Scholar

[7]

A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comp. Phys., 49 (1983), 151-164. doi: 10.1016/0021-9991(83)90118-3. Google Scholar

[8]

A. I. Vol'pert and S. I. Khudyaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sb., 16 (1972), 517-544. doi: 10.1070/SM1972v016n04ABEH001438. Google Scholar

[9]

Yu. S. Zavyalov, B. I. Kvasov and V. L. Miroshnichenko, Methods of Spline Functions, Moscow, Nauka, 1980 (in Russian). Google Scholar

show all references

References:
[1]

R. D. AloevZ. K. EshkuvatovSh. O. Davlatov and N. M. A. Nik Long, Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients, Computers and Mathematics with Applications, 68 (2014), 1194-1204. doi: 10.1016/j.camwa.2014.08.019. Google Scholar

[2]

R. D. AloevA. M. Blokhin and M. U. Hudayberganov, One class of stable difference schemes for hyperbolic system, American Journal of Numerical Analysis, 2 (2014), 85-89. Google Scholar

[3]

A. M. Blokhin and R. D. Aloev, Energy Integrals and Their Applications to Investigation of Stability of Difference Schemes, Novosibirsk, 1993. 224 p(in Russian). Google Scholar

[4]

S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian). Google Scholar

[5]

S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521–523. (in Russian). Google Scholar

[6]

S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer-Verlag, New York, 2003. doi: 10.1007/978-1-4757-5117-8. Google Scholar

[7]

A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comp. Phys., 49 (1983), 151-164. doi: 10.1016/0021-9991(83)90118-3. Google Scholar

[8]

A. I. Vol'pert and S. I. Khudyaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sb., 16 (1972), 517-544. doi: 10.1070/SM1972v016n04ABEH001438. Google Scholar

[9]

Yu. S. Zavyalov, B. I. Kvasov and V. L. Miroshnichenko, Methods of Spline Functions, Moscow, Nauka, 1980 (in Russian). Google Scholar

Figure 1.  Numerical solution by scheme with limiter (40)
Figure 2.  Line is exact solution, point-numerical solution by scheme (40)
[1]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[2]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[3]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[4]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[5]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[6]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[7]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[8]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[9]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[10]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[11]

Allaberen Ashyralyev. Well-posedness of the modified Crank-Nicholson difference schemes in Bochner spaces. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 29-51. doi: 10.3934/dcdsb.2007.7.29

[12]

Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks & Heterogeneous Media, 2008, 3 (1) : 1-41. doi: 10.3934/nhm.2008.3.1

[13]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[14]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[15]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

[16]

Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501

[17]

Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385

[18]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[19]

Jiaxiang Cai, Juan Chen, Bin Yang. Fully decoupled schemes for the coupled Schrödinger-KdV system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5523-5538. doi: 10.3934/dcdsb.2019069

[20]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

 Impact Factor: 

Metrics

  • PDF downloads (55)
  • HTML views (85)
  • Cited by (0)

[Back to Top]