September  2018, 8(3): 337-350. doi: 10.3934/naco.2018022

Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations

1. 

Faculty of Science and Technology, Universiti Sains Islam Malaysia, Malaysia (USIM), Negeri Sembilan, Malaysia

2. 

Institute for Mathematical Research, Universiti Putra Malaysia (UPM), Malaysia

* Corresponding author: Zainidin Eshkuvatov

Received  April 2017 Revised  March 2018 Published  June 2018

TIn this note, we review homotopy perturbation method (HPM), Discrete HPM, Chebyshev polynomials and its properties. Moreover, the convergences of HPM and error term of Chebyshev polynomials were discussed. Then, linear singular integral equations (SIEs) and hyper-singular integral equations (HSIEs) are solved by combining modified HPM together with Chebyshev polynomials. Convergences of the mixed method for the linear HSIEs are also obtained. Finally, illustrative examples and comparisons with different methods are presented.

Citation: Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022
References:
[1]

M. AbdulkawiN. M. A. Nik Long and Z. K. Eshkuvatov, Numerical solution of hypersingular integral equations, International Journal of Pure and Applied Mathematics, 69 (2011), 265-274. Google Scholar

[2]

M. M. AbdulkawiN. M. A. Nik Long and Z. K. Eshkuvatov, Numerical solution of hypersingular integral equations, Int. J. Pure Appl. Math., 69 (2011), 265-274. Google Scholar

[3]

T. Allahviranloo and M. Ghanbari, Discrete homotopy analysis method for the nonlinear Fredholm integral equations, Ain Shams Engineering Journal, 2 (2011), 133-140. doi: 10.1016/j.asej.2011.06.002. Google Scholar

[4]

J. Biazar and H. Aminikhah, Study of convergence of homotopy perturbation method for systems of partial differential equations, Computers and Mathematics with Applications, 58 (2009), 2221-2230. doi: 10.1016/j.camwa.2009.03.030. Google Scholar

[5]

S. H. BehiryR. A. Abd-Elmonem and A. M. Gomaa, Discrete adomian decomposition solution of nonlinear Fredholm integral equation, Ain Shams Engineering Journal, 1 (2010), 97-101. doi: 10.1016/j.asej.2010.09.009. Google Scholar

[6]

Y. Sha ChanA. C. Fannjiang and G. H. Paulino, Integral equations with hypersingular kernels, theory and applications to fracture mechanics, International Journal of Engineering Science, 41 (2003), 683-720. doi: 10.1016/S0020-7225(02)00134-9. Google Scholar

[7]

J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company, Waltham, Massachusetts, 1968. Google Scholar

[8]

G. DavydovE. V. Zakharov and Yu. V. Pimenov, Some computational aspects of the hypersingular integral equation method in electrodynamics, Computational Mathematics and Modeling, 15 (2004), 105-109. doi: 10.1023/A:1022072215887. Google Scholar

[9]

V. M. Dyke, Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California, 1975. Google Scholar

[10]

M. Dehghan and F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method, Prog. Electromagn. Res., 78 (2008), 361-376. doi: 10.2528/PIER07090403. Google Scholar

[11]

A. A. Daschioglu, A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form, Applied Mathematics and Computation, 181 (2006), 103-112. doi: 10.1016/j.amc.2006.01.018. Google Scholar

[12]

A. A. Daschioglu and M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations, Journal of the Franklin Institute, 342 (2005), 688-701. doi: 10.1016/j.jfranklin.2005.04.001. Google Scholar

[13]

Z. K. EshkuvatovF. S. ZulkarnainN. M. A. Nik Long and Z. Muminov, Modified homotopy perturbation method for solving hypersingular integral equations of the first kind, Springer Plus, 5 (2016), 1-21. doi: 10.1186/s40064-016-3070-z. Google Scholar

[14]

Z. K. EshkuvatovN. M. A. Nik Long and M. Abdulkawi, Approximate solution of singular integral equations of the first kind with Cauchy kernel, Journal of Applied Mathematics Letter., 22 (2009), 651-657. doi: 10.1016/j.aml.2008.08.001. Google Scholar

[15]

A. Golbabai and M. Javidi, Application of He's homotopy perturbation method for nth-order integro-differential equations, Appl. Math. Comput., 190 (2007), 1409-1416. doi: 10.1016/j.amc.2007.02.018. Google Scholar

[16]

M. GhasemiM. T. Kajani and A. Davari, Numerical solution of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 188 (2007), 446-449. doi: 10.1016/j.amc.2006.10.015. Google Scholar

[17]

A. Golbabai and B. Keramati, Solution of nonlinear Fredholm integral equations of the first kind using modified homotopy perturbation method, Chaos, Solitons, and Fractals, 39 (2009), 2316-2321. doi: 10.1016/j.chaos.2007.06.120. Google Scholar

[18]

A. Ghorbani and J. Saberi-Nadjafi, Exact solutions for nonlinear integral equations by a modified homotopy perturbation method, Comput. Math. Appl., 28 (2006), 1032-1039. doi: 10.1016/j.camwa.2008.01.030. Google Scholar

[19]

J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257-262. doi: 10.1016/S0045-7825(99)00018-3. Google Scholar

[20]

J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Inter. J. Non-linear Mech., 35 (2000), 37-43. doi: 10.1016/S0020-7462(98)00085-7. Google Scholar

[21]

J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79. doi: 10.1016/S0096-3003(01)00312-5. Google Scholar

[22]

J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation, 151 (2004), 287-292. doi: 10.1016/S0096-3003(03)00341-2. Google Scholar

[23]

J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals, 26 (2005), 695-700. doi: 10.1016/j.chaos.2005.03.006. Google Scholar

[24]

J. H. He, New interpretation of homotopy perturbation method, Internat. J. Modern Phys. B, 20 (2006), 2561-2568. doi: 10.1142/S0217979206034819. Google Scholar

[25]

W. Al-Hayani, Solving nth-order integro-differential equations using the combined Laplace transform-adomian decomposition method, Applied Mathematics, 4 (2013), 882-886. Google Scholar

[26]

H. JafariM. Alipour and H. Tajadodi, Convergence of homotopy perturbation method for solving integral equations, Thai J. Math., 8 (2010), 511-520. Google Scholar

[27]

M. Javidi and A. Golbabai, Modified homotopy perturbation method for solving non-linear Fredholm integral equations, Chaos Solitons Fractals, 40 (2009), 1408-1412. doi: 10.1016/j.chaos.2007.09.026. Google Scholar

[28]

M. Kanoria and B. N. Mandal, Water wave scattering by a submerged circular-arc-shaped plate, Fluid Dynamics, 31 (2002), 317-331. doi: 10.1016/S0169-5983(02)00136-3. Google Scholar

[29]

I. K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, The Netherlands, 1996. Google Scholar

[30]

I. K. Lifanov, L. N. Poltavskii and G. M. Vainikko, Hypersingular Integral Equations and Their Applications, Chapman Hall/CRC, CRC Press, Boca Raton, London, 2004. Google Scholar

[31]

Y. Mahmoudi, Modified homotopy perturbation method for solving a class of hyper-singular Integral equations of second kind, Journal of Statistics and Mathematics Studies, 1 (2015), 8-18. Google Scholar

[32]

K. MaleknejadS. Sohrabi and Y. Rostami, Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials, Applied Mathematics and Computation, 188 (2007), 123-128. doi: 10.1016/j.amc.2006.09.099. Google Scholar

[33]

B. N. Mandal and Subhra Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190 (2007), 1707-1716. doi: 10.1016/j.amc.2007.02.058. Google Scholar

[34]

J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, A CRC Press Company, 2000. Google Scholar

[35]

N. M. A. Nik Long and Z. K. Eshkuvatov, Hypersingular integral equation for multiple curved cracks problem in plane elasticity, International J of Solid Structure, 46 (2009), 2611-2617. Google Scholar

[36]

A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981. Google Scholar

[37]

A. H. Nayfeh, Problems in Perturbation, John Wiley & Sons, New York, 1985. Google Scholar

[38]

N. F. Parsons and P. A. Martin, Scattering of water waves by submerged curved plates and by surface-piercing flat plates, Appl. Ocean Res., 16 (1994), 129-139. doi: 10.1016/0141-1187(94)90024-8. Google Scholar

[39]

J. I. Ramos, Piecewise homotopy methods for nonlinear ordinary differential equations, Appl. Math. Comput., 198 (2008), 92-116. doi: 10.1016/j.amc.2007.08.030. Google Scholar

[40]

S. Shahmorad and S. Ahdiaghdam, Approximate solution of a system of singular integral equations of the first kind by using Chebyshev polynomials, arXiv: 1508.01873v1.Google Scholar

[41]

M. ShabanS. Kazem and J. A. Rad, A modification of the homotopy analysis method based on Chebyshev operational matrices, Mathematical and Computer Modelling, 57 (2013), 1227-1239. doi: 10.1016/j.mcm.2012.09.024. Google Scholar

[42]

R. Vahidi and M. Isfahani, On the homotopy perturbation method and the Adomian decomposition method for solving Abel integral equations of the second kind, Applied Mathematical Sciences, 5 (2011), 799-804. Google Scholar

[43]

E. Yusufo'glu, A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations, Mathematical and Computer Modelling, 47 (2008), 1099-1107. doi: 10.1016/j.mcm.2007.06.022. Google Scholar

[44]

M. Odibat Zaid, A new modification of the homotopy perturbation method for linear and nonlinear operators, Applied Mathematics and Computation, 189 (2007), 746-753. doi: 10.1016/j.amc.2006.11.188. Google Scholar

[45]

F. S. ZulkarnainZ. K. EshkuvatovN. M. A. Nik Long and F. Ismail, Modified homotopy perturbation method for solving hypersingular integral equations of the second kind, AIP Conference Proceedings, 1739 (2016). doi: 10.1063/1.4952507. Google Scholar

show all references

References:
[1]

M. AbdulkawiN. M. A. Nik Long and Z. K. Eshkuvatov, Numerical solution of hypersingular integral equations, International Journal of Pure and Applied Mathematics, 69 (2011), 265-274. Google Scholar

[2]

M. M. AbdulkawiN. M. A. Nik Long and Z. K. Eshkuvatov, Numerical solution of hypersingular integral equations, Int. J. Pure Appl. Math., 69 (2011), 265-274. Google Scholar

[3]

T. Allahviranloo and M. Ghanbari, Discrete homotopy analysis method for the nonlinear Fredholm integral equations, Ain Shams Engineering Journal, 2 (2011), 133-140. doi: 10.1016/j.asej.2011.06.002. Google Scholar

[4]

J. Biazar and H. Aminikhah, Study of convergence of homotopy perturbation method for systems of partial differential equations, Computers and Mathematics with Applications, 58 (2009), 2221-2230. doi: 10.1016/j.camwa.2009.03.030. Google Scholar

[5]

S. H. BehiryR. A. Abd-Elmonem and A. M. Gomaa, Discrete adomian decomposition solution of nonlinear Fredholm integral equation, Ain Shams Engineering Journal, 1 (2010), 97-101. doi: 10.1016/j.asej.2010.09.009. Google Scholar

[6]

Y. Sha ChanA. C. Fannjiang and G. H. Paulino, Integral equations with hypersingular kernels, theory and applications to fracture mechanics, International Journal of Engineering Science, 41 (2003), 683-720. doi: 10.1016/S0020-7225(02)00134-9. Google Scholar

[7]

J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company, Waltham, Massachusetts, 1968. Google Scholar

[8]

G. DavydovE. V. Zakharov and Yu. V. Pimenov, Some computational aspects of the hypersingular integral equation method in electrodynamics, Computational Mathematics and Modeling, 15 (2004), 105-109. doi: 10.1023/A:1022072215887. Google Scholar

[9]

V. M. Dyke, Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California, 1975. Google Scholar

[10]

M. Dehghan and F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method, Prog. Electromagn. Res., 78 (2008), 361-376. doi: 10.2528/PIER07090403. Google Scholar

[11]

A. A. Daschioglu, A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form, Applied Mathematics and Computation, 181 (2006), 103-112. doi: 10.1016/j.amc.2006.01.018. Google Scholar

[12]

A. A. Daschioglu and M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations, Journal of the Franklin Institute, 342 (2005), 688-701. doi: 10.1016/j.jfranklin.2005.04.001. Google Scholar

[13]

Z. K. EshkuvatovF. S. ZulkarnainN. M. A. Nik Long and Z. Muminov, Modified homotopy perturbation method for solving hypersingular integral equations of the first kind, Springer Plus, 5 (2016), 1-21. doi: 10.1186/s40064-016-3070-z. Google Scholar

[14]

Z. K. EshkuvatovN. M. A. Nik Long and M. Abdulkawi, Approximate solution of singular integral equations of the first kind with Cauchy kernel, Journal of Applied Mathematics Letter., 22 (2009), 651-657. doi: 10.1016/j.aml.2008.08.001. Google Scholar

[15]

A. Golbabai and M. Javidi, Application of He's homotopy perturbation method for nth-order integro-differential equations, Appl. Math. Comput., 190 (2007), 1409-1416. doi: 10.1016/j.amc.2007.02.018. Google Scholar

[16]

M. GhasemiM. T. Kajani and A. Davari, Numerical solution of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 188 (2007), 446-449. doi: 10.1016/j.amc.2006.10.015. Google Scholar

[17]

A. Golbabai and B. Keramati, Solution of nonlinear Fredholm integral equations of the first kind using modified homotopy perturbation method, Chaos, Solitons, and Fractals, 39 (2009), 2316-2321. doi: 10.1016/j.chaos.2007.06.120. Google Scholar

[18]

A. Ghorbani and J. Saberi-Nadjafi, Exact solutions for nonlinear integral equations by a modified homotopy perturbation method, Comput. Math. Appl., 28 (2006), 1032-1039. doi: 10.1016/j.camwa.2008.01.030. Google Scholar

[19]

J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257-262. doi: 10.1016/S0045-7825(99)00018-3. Google Scholar

[20]

J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Inter. J. Non-linear Mech., 35 (2000), 37-43. doi: 10.1016/S0020-7462(98)00085-7. Google Scholar

[21]

J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79. doi: 10.1016/S0096-3003(01)00312-5. Google Scholar

[22]

J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation, 151 (2004), 287-292. doi: 10.1016/S0096-3003(03)00341-2. Google Scholar

[23]

J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals, 26 (2005), 695-700. doi: 10.1016/j.chaos.2005.03.006. Google Scholar

[24]

J. H. He, New interpretation of homotopy perturbation method, Internat. J. Modern Phys. B, 20 (2006), 2561-2568. doi: 10.1142/S0217979206034819. Google Scholar

[25]

W. Al-Hayani, Solving nth-order integro-differential equations using the combined Laplace transform-adomian decomposition method, Applied Mathematics, 4 (2013), 882-886. Google Scholar

[26]

H. JafariM. Alipour and H. Tajadodi, Convergence of homotopy perturbation method for solving integral equations, Thai J. Math., 8 (2010), 511-520. Google Scholar

[27]

M. Javidi and A. Golbabai, Modified homotopy perturbation method for solving non-linear Fredholm integral equations, Chaos Solitons Fractals, 40 (2009), 1408-1412. doi: 10.1016/j.chaos.2007.09.026. Google Scholar

[28]

M. Kanoria and B. N. Mandal, Water wave scattering by a submerged circular-arc-shaped plate, Fluid Dynamics, 31 (2002), 317-331. doi: 10.1016/S0169-5983(02)00136-3. Google Scholar

[29]

I. K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, The Netherlands, 1996. Google Scholar

[30]

I. K. Lifanov, L. N. Poltavskii and G. M. Vainikko, Hypersingular Integral Equations and Their Applications, Chapman Hall/CRC, CRC Press, Boca Raton, London, 2004. Google Scholar

[31]

Y. Mahmoudi, Modified homotopy perturbation method for solving a class of hyper-singular Integral equations of second kind, Journal of Statistics and Mathematics Studies, 1 (2015), 8-18. Google Scholar

[32]

K. MaleknejadS. Sohrabi and Y. Rostami, Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials, Applied Mathematics and Computation, 188 (2007), 123-128. doi: 10.1016/j.amc.2006.09.099. Google Scholar

[33]

B. N. Mandal and Subhra Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190 (2007), 1707-1716. doi: 10.1016/j.amc.2007.02.058. Google Scholar

[34]

J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, A CRC Press Company, 2000. Google Scholar

[35]

N. M. A. Nik Long and Z. K. Eshkuvatov, Hypersingular integral equation for multiple curved cracks problem in plane elasticity, International J of Solid Structure, 46 (2009), 2611-2617. Google Scholar

[36]

A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981. Google Scholar

[37]

A. H. Nayfeh, Problems in Perturbation, John Wiley & Sons, New York, 1985. Google Scholar

[38]

N. F. Parsons and P. A. Martin, Scattering of water waves by submerged curved plates and by surface-piercing flat plates, Appl. Ocean Res., 16 (1994), 129-139. doi: 10.1016/0141-1187(94)90024-8. Google Scholar

[39]

J. I. Ramos, Piecewise homotopy methods for nonlinear ordinary differential equations, Appl. Math. Comput., 198 (2008), 92-116. doi: 10.1016/j.amc.2007.08.030. Google Scholar

[40]

S. Shahmorad and S. Ahdiaghdam, Approximate solution of a system of singular integral equations of the first kind by using Chebyshev polynomials, arXiv: 1508.01873v1.Google Scholar

[41]

M. ShabanS. Kazem and J. A. Rad, A modification of the homotopy analysis method based on Chebyshev operational matrices, Mathematical and Computer Modelling, 57 (2013), 1227-1239. doi: 10.1016/j.mcm.2012.09.024. Google Scholar

[42]

R. Vahidi and M. Isfahani, On the homotopy perturbation method and the Adomian decomposition method for solving Abel integral equations of the second kind, Applied Mathematical Sciences, 5 (2011), 799-804. Google Scholar

[43]

E. Yusufo'glu, A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations, Mathematical and Computer Modelling, 47 (2008), 1099-1107. doi: 10.1016/j.mcm.2007.06.022. Google Scholar

[44]

M. Odibat Zaid, A new modification of the homotopy perturbation method for linear and nonlinear operators, Applied Mathematics and Computation, 189 (2007), 746-753. doi: 10.1016/j.amc.2006.11.188. Google Scholar

[45]

F. S. ZulkarnainZ. K. EshkuvatovN. M. A. Nik Long and F. Ismail, Modified homotopy perturbation method for solving hypersingular integral equations of the second kind, AIP Conference Proceedings, 1739 (2016). doi: 10.1063/1.4952507. Google Scholar

Table 1.  Comparisons with other methods
$x$ Error term in [45] Error of HPM Error of MHPM in [28]
-1 0 0 0
-0.5 $13*10^{-17}$ 0 0
0. 0 0 0
0.5 $7.8*10^{-18}$ 0 0
1 0 0 0
$x$ Error term in [45] Error of HPM Error of MHPM in [28]
-1 0 0 0
-0.5 $13*10^{-17}$ 0 0
0. 0 0 0
0.5 $7.8*10^{-18}$ 0 0
1 0 0 0
Table 2.  Comparisons with other methods
$x$ Error term in [45] Error of MHPM [28]
-1.0 0.0 0
-0.8 $2.1\cdot 10^{-10}$ 0
-0.4 $3.4\cdot 10^{-9}$ 0
0.0 $2.0\cdot 10^{-9}$ 0
0.4 $3.3\cdot 10^{-9}$ 0
0.8 $2.7\cdot 10^{-9}$ 0
1.0 0.0 0
$x$ Error term in [45] Error of MHPM [28]
-1.0 0.0 0
-0.8 $2.1\cdot 10^{-10}$ 0
-0.4 $3.4\cdot 10^{-9}$ 0
0.0 $2.0\cdot 10^{-9}$ 0
0.4 $3.3\cdot 10^{-9}$ 0
0.8 $2.7\cdot 10^{-9}$ 0
1.0 0.0 0
Table 3.  Error terms for different value of $n$
$ x$ Exact Solution Error MHPM for m=n=6 Error MHPM for m=n=10
-0.9999 0.14140368029 1.0851729 10?4 1.4040446 10?10
-0.901 3.94739842327 3.5501594 10?4 1.8203460 10?9
-0.436 5.75413468725 3.0648319 10?4 2.6221447 10?8
-0.015 5.03721659280 8.6784464 10?5 1.7385004 10?8
0.015 4.96222081226 1.9992451 10?5 1.8524990 10?8
0.436 3.69436233615 3.3916634 10?1 1.9700974 10?8
0.901 1.49541222584 1.2745747 10?4 1.3403888 10?8
0.9999 0.04714084491 3.3327100 10?5 3.5400390 10?10
$ x$ Exact Solution Error MHPM for m=n=6 Error MHPM for m=n=10
-0.9999 0.14140368029 1.0851729 10?4 1.4040446 10?10
-0.901 3.94739842327 3.5501594 10?4 1.8203460 10?9
-0.436 5.75413468725 3.0648319 10?4 2.6221447 10?8
-0.015 5.03721659280 8.6784464 10?5 1.7385004 10?8
0.015 4.96222081226 1.9992451 10?5 1.8524990 10?8
0.436 3.69436233615 3.3916634 10?1 1.9700974 10?8
0.901 1.49541222584 1.2745747 10?4 1.3403888 10?8
0.9999 0.04714084491 3.3327100 10?5 3.5400390 10?10
[1]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[2]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[3]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[4]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[5]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[6]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[7]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[8]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[9]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[10]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[11]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[12]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[13]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[14]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[15]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[16]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[17]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[18]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[19]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[20]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

 Impact Factor: 

Metrics

  • PDF downloads (49)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]