\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Differential evolution with improved sub-route reversal repair mechanism for multiobjective urban transit routing problem

  • * Corresponding author: Lai Soon LEE

    * Corresponding author: Lai Soon LEE

The first author is supported by FRGS2016 (01-01-16-1867FR)

Abstract / Introduction Full Text(HTML) Figure(9) / Table(13) Related Papers Cited by
  • The urban transit routing problem (UTRP) deals with public transport systems in determining a set of efficient transit routes on existing road networks to meet transit demands. The UTRP is a complex combinatorial optimization problem characterized with a large search space, multi-constraint, and multiobjective nature where the likelihood of generating infeasible route sets is high. In this paper, an improved sub-route reversal repair mechanism is proposed to deal with the infeasibility. A population-based metaheuristic, namely, Differential Evolution (DE) algorithm is then proposed to handle the multiobjective UTRP with the aim of devising an efficient transit route network that optimizes both passengers' and operators' costs. Computational experiments are performed on well-known benchmark instances to evaluate the effectiveness of the proposed repair mechanism and the DE algorithm. The computational results are reported to have better parameter values in most cases when compared to other approaches in the literature.

    Mathematics Subject Classification: Primary: 90B06, 90B10; Secondary: 65K05, 68W99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A sample vector with 4 routes

    Figure 2.  Mandl's Swiss Network

    Figure 3.  Mumford Network

    Figure 4.  Best Route Network for Operator and Passenger with 4 Routes (see, Table 4)

    Figure 5.  Best Route Network for Operator and Passenger with 6 Routes (see, Table 4)

    Figure 6.  Best Route Network for Operator and Passenger with 7 Routes (see, Table 4)

    Figure 7.  Best Route Network for Operator and Passenger with 8 Routes (see, Table 4)

    Figure 8.  Approximate Pareto Fronts achieved by the proposed DE for Mandl's Swiss Network

    Figure 9.  Pareto Fronts achieved by the proposed DE for Mumford Network

    Table 3.  Comparison results (passenger and operator) of Mandl's Swiss network

    Number of Routes Para-meters Fan et al. (2009) Mumford (2013) Chew et al. (2013) Proposed DE
    1 2 1 2 1 2 1 2
    4 $d_{0}$ 90.88 61.08 90.43 61.08 91.84 61.08 91.46 61.08
    $d_{1}$ 8.35 36.61 9.57 36.61 8.16 36.61 8.54 36.61
    $d_{2}$ 0.77 2.31 0.00 2.31 0.00 2.31 0.00 2.31
    $d_{un}$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $C_{p}$ 10.65 13.88 10.57 13.88 10.50 13.88 10.80 13.88
    $C_{o}$ 126 63 149 63 150 63 133 63
    6 $d_{0}$ 93.13 65.18 95.38 70.91 96.79 70.91 97.24 70.46
    $d_{1}$ 6.29 30.38 4.36 25.50 3.21 25.50 2.76 24.34
    $d_{2}$ 0.58 3.53 0.06 2.95 0.00 2.95 0.00 5.20
    $d_{un}$ 0.00 0.90 0.00 0.64 0.00 0.64 0.00 0.00
    $C_{p}$ 10.49 13.82 10.27 13.48 10.21 13.48 10.16 12.60
    $C_{o}$ 148 63 221 63 224 63 223 63
    7 $d_{0}$ 92.55 64.42 96.47 65.13 98.01 70.65 97.37 68.96
    $d_{1}$ 6.68 26.20 3.34 22.93 1.99 21.13 2.63 26.29
    $d_{2}$ 0.77 8.16 0.19 10.34 0.00 7.13 0.00 3.92
    $d_{un}$ 0.00 1.22 0.00 1.61 0.00 1.09 0.00 0.83
    $C_{p}$ 10.44 14.13 10.22 14.25 10.16 13.76 10.21 13.46
    $C_{o}$ 166 63 264 63 239 63 235 63
    8 $d_{0}$ 91.33 55.17 97.56 57.93 99.04 61.91 98.20 60.76
    $d_{1}$ 8.67 21.97 2.31 31.92 0.96 29.67 1.80 25.63
    $d_{2}$ 0.00 18.11 0.13 9.70 0.00 6.87 0.00 10.34
    $d_{un}$ 0.00 4.75 0.00 0.45 0.00 1.54 0.00 3.26
    $C_{p}$ 10.45 15.45 10.17 14.45 10.11 14.22 10.31 14.78
    $C_{o}$ 245 63 291 63 256 63 244 63
    Note:     1. best results for passenger
              2. best results for operator
     | Show Table
    DownLoad: CSV

    Table 1.  The parameters of benchmark instances

    Network Nodes Links Routes Min-Max Nodes Demand $LB_{Cp}$ $LB_{Co}$
    Mandl 15 21 4, 6, 7, 8 2 - 8 15,570 10.0058 63
    Mumford0 30 90 12 2 - 15 342,160 13.0121 94
    Mumford1 70 210 15 10 - 30 1,926,170 19.2695 345
    Mumford2 110 385 56 10 - 22 4,847,900 22.1689 864
    Mumford3 127 425 60 12 - 25 6,394,950 24.7453 982
     | Show Table
    DownLoad: CSV

    Table 2.  The comparison of feasible route sets repaired by the four repair mechanisms

    Case Number of Routes Repair Mechanism Average Minimum Maximum CPU Time (sec)
    4 TR 47 34 68 0.013
    MSC 53 39 69 0.052
    SRR 56 47 68 0.040
    iSRR 79 44 86 0.031
    6 TR 149 133 170 0.029
    MSC 206 193 220 0.490
    SRR 169 157 181 0.032
    iSRR 232 198 254 0.023
    7 TR 201 184 219 0.029
    MSC 293 267 317 0.066
    SRR 223 210 234 0.025
    iSRR 312 296 335 0.029
    8 TR 231 207 250 0.02
    MSC 356 319 376 0.042
    SRR 265 242 284 0.025
    iSRR 358 324 382 0.004
     | Show Table
    DownLoad: CSV

    Table 4.  Best route sets constructed by the proposed DE algorithm for Mandl's Swiss network

    Case Routes Best route sets for Passenger Best route sets for Operator
    4 0 - 1 - 2 - 5 - 7 - 14 - 8 14 - 8
    4 - 3 - 5 - 7 - 14 - 6 - 9 - 10 4 - 3 – 1 – 0
    0 – 1 - 4 - 3 - 5 - 7 - 9 - 6 10 - 9 - 6 - 14 - 7 - 5 - 2 - 1
    9 - 7 - 5 - 3 - 11 - 10 - 12 - 13 11 - 10 - 12 - 13
    6 8 - 14 - 7 - 9 - 10 - 11 - 3 - 4 11 - 3
    4 - 3 - 1 - 2 - 5 - 7 - 14 - 8 13 - 12 - 10 - 9
    14 - 6 - 9 - 7 - 5 - 3 - 1 - 0 9 - 6 - 14 - 7 - 5 - 2 - 1 - 3
    8 - 14 - 6 - 9 - 7 - 5 - 2 - 1 1 - 0
    13 - 12 - 10 - 9 - 7 - 5 - 14 - 8 8 - 14
    12 - 10 - 11 - 3 - 5 - 2 - 1 - 0 3 - 4
    7 1 - 4 - 3 - 5 – 7 - 9 - 13 - 12 0 - 1 - 2 - 5 - 7 - 14 - 6 - 9
    0 - 1 - 2 - 5 - 3 - 11 - 10 - 9 3 - 5
    1 - 2 - 5 - 7 - 9 - 10 - 12 - 13 4 – 3 - 1
    9 - 6 - 14 - 7 - 5 - 2 - 1 - 0 10 - 11
    0 - 1 - 4 - 3 - 5 - 7 - 14 - 8 14 – 8
    8 – 14 - 6 - 9 - 13 - 12 - 10 - 11 10 - 9
    8 - 14 - 7 – 5 - 2 - 1 - 3 - 11 10 - 12 - 13
    8 0 - 1 - 2 - 5 - 14 - 7 1 - 3
    0 – 1 - 4 - 3 - 5 - 7 - 14 - 8 10 - 11
    0 – 1 - 2 - 5 - 7 - 9 - 6 - 14 3 - 5 - 7 - 14 - 6 - 9 - 10 - 12
    11 - 3 - 5 - 7 - 14 - 6 - 9 14 - 8
    0 – 1 - 4 - 3 - 5 - 7 - 9 - 10 0 - 1
    13 – 12 - 10 - 9 - 6 - 14 - 8 3 - 4
    12 – 10 - 11 - 3 - 5 - 2 - 1 - 0 5 - 2
    13 – 12 - 10 - 9 - 6 - 14 - 7 - 5 12 - 13
     | Show Table
    DownLoad: CSV

    Table 5.  Comparison results (passenger and operator) of Large Mumford networks

    Instances Parameters Mumford (2013) Proposed DE
    1 2 1 2
    Mumford0 $d_{0}$ 63.20 18.42 65.41 16.99
    $d_{1}$ 35.82 23.40 34.24 30.72
    $d_{2}$ 0.98 20.78 0.35 28.92
    $d_{un}$ 0.00 37.40 0.00 23.38
    $C_{p}$ 16.05 32.40 15.27 33.41
    $C_{o}$ 759 111 673 107
    Mumford1 $d_{0}$ 36.6 16.35 38.77 22.39
    $d_{1}$ 52.42 29.06 54.23 40.57
    $d_{2}$ 10.71 29.92 5.12 34.33
    $d_{un}$ 0.26 24.66 1.88 2.71
    $C_{p}$ 24.79 34.69 23.16 31.15
    $C_{o}$ 2038 568 1955 567
    Mumford2 $d_{0}$ 30.92 13.76 31.47 15.32
    $d_{1}$ 51.29 27.69 58.23 29.31
    $d_{2}$ 16.36 29.53 9.60 31.08
    $d_{un}$ 1.44 29.02 0.70 24.29
    $C_{p}$ 28.65 36.54 27.28 34.52
    $C_{o}$ 5632 2244 5268 2305
    Mumford3 $d_{0}$ 27.46 16.71 28.12 25.42
    $d_{1}$ 50.97 33.69 54.35 41.26
    $d_{2}$ 18.76 29.18 16.84 24.91
    $d_{un}$ 2.81 20.42 0.69 8.41
    $C_{p}$ 31.44 36.92 30.16 34.81
    $C_{o}$ 6665 2830 6547 2732
    Note:     1. best results for passenger
              2. best results for operator
     | Show Table
    DownLoad: CSV

    Table A1.  Best route sets for the operator constructed by the proposed DE algorithm for Mumford0 network

    Routes Sequence of Routes
    1 1-23-14-11-25- 0-17-22
    2 9 - 1 - 3
    3 0-12-8-26
    4 22-18-13-6
    5 19-18
    6 25-28-16-27-2-29-15-10
    7 20-14
    8 1 - 3
    9 3-24-4
    10 21 - 10
    11 20 - 7
    12 5 - 21
     | Show Table
    DownLoad: CSV

    Table A2.  Best route sets for the passenger constructed by the proposed DE algorithm for Mumford0 network

    Routes Sequence of Routes
    1 20-24-7-28-17-11-25-22-18-19-12-8-26-0-13
    2 12-19-22-0-25-28-7-4-24-14-9-1-3-23-20
    3 12-19-8-26-0-18-17-11-14-9-3-1-23-20-24
    4 29-2-27-16-7-14-24-3-11-25-22-18-19-12-17
    5 27-10-15-21-5-6-13-18-12-19-22-17-0-26-8
    6 3-1-4-23-20-14-11-25-0-19-17-18-13-6-15
    7 19-8-26-0 -8-17-11-14-24-3-1-9-23-20-7
    8 26-0-22-19-12-18-17-28-16-10-29-2-15-21-5
    9 19-8-26-0-22-18-12-17-28-25-11-14-24-20-23
    10 0-13-6-2-15-16-7-14-24-3-23-2-4-1-9
    11 24-4-20-23-9-3-1-14-7-25-22-0-13-18-17
    12 13-18-12-17-19-0-25-11-14-23-9-1-24-4-7
     | Show Table
    DownLoad: CSV

    Table A3.  Best route sets for the operator constructed by the proposed DE algorithm for Mumford1 network

    Routes Sequence of Routes
    1 22-33- 43-13-20-10-59-68-11-31
    2 18-32-37-67-27-25-4-40-46-7
    3 30-42-62-15-49-11-31-9-16-10
    4 21-63-30-24-42-15-49-26-16-10
    5 67-65-37-5-54-19-36-45-34-35
    6 28-56-8-26-49-1-16-55-20-10
    7 47-40-46-7-53-4-12-25-34-35
    8 12-41-34-35-6-21-63-24-30-26
    9 12-41-34-51-56-6-21-63-24-30
    10 57-25-34-58-64-52-20-17-50-23
    11 22-33-13-43-61-44- 60-14-2-50
    12 50-0-2-23-3-66-38-36-54-18
    13 15- 49-1-31- 9-16-10-52-64-58
    14 6-55-52- 64-35-51-8-10-17-50
    15 39-48-66-29-69-19-54-5-37-65
     | Show Table
    DownLoad: CSV

    Table A4.  Best route sets for the passenger constructed by the proposed DE algorithm for Mumford1 network

    Routes Sequence of Routes
    1 48-69-38- 66-19- 65-54-5-37- 67-27-25-57-34-35-6-47-53-40-46-7-4-12- 41-58-33-50-2-0-23
    2 59-1-31-11- 68- 9- 49- 62- 42-30-26-16-10-17-50-2-0-69-48-29-3-66-18-65-67-27-12- 40-53-7
    3 27-25-34-51-35-58-64-52-20-55-8-26- 49-15-30-42-62-24-21- 6- 47-7- 46-40- 4-12-41-36-38-69
    4 63-24-21-30-15-49-9-11-1-16-55-20-10-28-56-51-57-58-33-43-61-60-44-14-2-50-23-3-48-29
    5 27-25-34-51-35-57-41-58-64-52-20-43-13-50-0-2-14-61-44-60-17-10-8-26-49-15-30-42-62-21
    6 5-8-34-35-57-41-51-8-56-28-8-26-62-15-49-1- 59-17-50-23-3-48-29-19-54-65-67-27-12-40-53
    7 45-36-38-69-29-19-18-54-5-65-37-32-39-48-3-23- 0-50-2-14-44-60-61-43-13-22-33-20-10-16
    8 57-58-64-52-55-10-28-8-56-6-47-7-46-40-4-25-34-51-41-36-54-18-39-48-66-19-69-0-50-33
    9 18-65-54-5-67-27-12-41-34-45-36-38-66-29-69-23-0-50-13-43-61-60-44-17-55-8-52-64-51-56
    10 26-8-51-64-52-55-16-10-28-56-6-47-53-7-4-25-34-58-33-50-2-14-61-43-13-22-19-3-66-69
    11 52-20-17-43-13-33-58-64-35-41-27-25-34-45-22-36-54-19-69-0-50-23-3-48-39-65-32-18-66
    12 49-1-16-10-59-68-9-31-11-15-62-42-24-63-6-35-41-36-19-66-48-3-38-69-23-50-17-55-8-52
    13 10-52-64-58-57-25-12-27-67-37-18-66-3-29-48-39-65-32-54-38-69-23-50-17-61-60-44-14-2-0
    14 25-4-7-46-40-47-6-56-51-58-33-43-61-60-44-14-2-23-29-66-19-65-37-5-54-36-45-34-41-27
    15 49-15-30-24-62-26-1-9-68-11-59-17-43-13-33-58-64-35-41-34-57-51-8-55-20-10-28-56-6-21
     | Show Table
    DownLoad: CSV

    Table A5.  Best route sets for the operator constructed by the proposed DE algorithm for Mumford2 network

    Routes Sequence of Routes
    1 85-54-34-35-91-52-100-18-9-19
    2 17-50-32-95-20-68-21-13-32-59
    3 47-41-16-103-7-52-89-11-79-72
    4 31-24-85-94-101-55-87-56-39-65
    5 102-71-51-46-86-28-21-32-17-20
    6 77-4-107-5-11-89-96-42-106-57
    7 36-72-108-4-107-77-5-42-89-11-106-73
    8 77-4-108-79-72-44-82-99-76-31
    9 27-17-39-55-80-63-12-74-47-103
    10 20-32-50-68-59-27-94-83-35-49
    11 24-6-94-105-27-32-13-21-86-28
    12 34-54-22-3-93-100-52-10-40-7
    13 15-35-34-66-18-92-72-108-36-64
    14 64-36-4-107-77-5-11-109-89-42
    15 109-64-96-64-92-9-3-81-94-105
    16 77-5-107-36-48-79-73-106-57-37
    17 101-94-83-15-2-63-45-53-90-49
    18 30-44-43-72-79-73-106-57-40-10
    19 3-22-54-85-66-15-83-35-8-90
    20 15-35-49-52-89-106-42-57-10-37
    21 56-0-78-17-65-61-1-97-58-47
    22 0-97-80-55-39-65-61-1-0-87
    23 39-56-61-65-78-95-50-20-68-75
    24 17-65-39-87-45-53-12-38-80-63
    25 58-80-87-56-1-97-0-65-78-17
    26 25-84-37-40-57-10-70-104-7-49
    27 105-81-6-66-34-35-8-62-12-8
    28 47-41-16-60-12-8-63-55-39-78
    29 84-70-41-104-40-37-7-57-42-96
    30 34-54-3-9-93-98-67-18-66-15
    31 91-62-90-53-8-12-41-60-47-16
    32 74-58-80-63-2-45-38-53-8-49
    33 20-32-50-95-78-65-61-1-87-45
    34 77-107-108-79-64-92-9-19-85-3
    35 102-14-69-99-82-23-31-71-88-51
    36 109-64-89-106-11-42-5-36-107-77
    37 17-32-21-86-51-71-31-76-33-99
    38 58-80-63-53-90-91-52-10-57-7
    39 60-41-70-104-37-7-49-90-8-12
    40 67-98-18-93-9-92-44-43-29-26
    41 85-22-3-81-6-24-31-23-82-19
    42 51-71-102-76-33-31-24-6-54-22
    43 24-31-76-14-69-99-82-26-43-30
    44 90-8-63-53-62-12-16-41-74-38
    45 34-54-3-81-6-24-31-71-102-88
    46 101-27-32-20-75-50-13-28-86-24
    47 108-36-48-44-72-26-29-43-30-69
    48 17-50-75-68-13-32-59-27-95-20
    49 62-90-91-35-34-3-85-24-22-66
    50 24-6-54-85-66-15-83-2-35-90
    51 48-36-108-4-77-5-42-73-109-89
    52 65-78-17-20-50-68-59-28-46-21
    53 81-6-94-2-63-8-90-35-49-91
    54 36-64-73-89-52-49-35-34-18-93
    55 17-39-55-45-2-94-83-35-90-91
    56 36-72-108-4-107-77-5-11-73-96
     | Show Table
    DownLoad: CSV

    Table A6.  Best route sets for the passenger constructed by the proposed DE algorithm for Mumford2 network

    Routes Sequence of Routes
    1 96-11-73-89-42-5-36-107-48-79-64-92-9-66-18-3-98-67-100-93-34
    2 90-53-38-12-62-91-52-100-18-3-98-93-67-92-72-44-82-19-33-14-31
    3 77-5-36-108-4-107-48-92-64-109-11-73-96-42-89-52-100-18-9-19-102-88
    4 26-72-36-79-108-4-107-5-11-106-57-37-104-7-49-35-15-54-6-86-46-21
    5 26-30-44-72-36-48-108-4-77-5-11-73-64-89-52-91-62-12-60-58-80
    6 21-59-27-17-50-32-95-68-13-28-86-81-3-22-85-19-82-23-9-92-44-72
    7 88-71-51-31-24-6-22-3-34-18-67-100-93-35-8-90-62-103-70-10
    8 77-5-11-73-109-89-96-64-36-79-108-4-107-48-92-44-82-19-24-86-28-46
    9 67-100-93-98-18-3-54-24-19-85-22-66-9-92-72-79-73-96-42-11-89-52
    10 84-25-70-103-12-41-74-58-38-80-55-87-39-0-61-65-56-17-50-32-95-78
    11 21-32-13-68-50-17-39-55-63-12-103-70-7-52-100-18-9-19-82-44-48-107
    12 29-26-44-92-72-36-79-73-89-52-49-90-91-8-53-38-87-55-45-2-35-15
    13 69-99-33-19-82-44-72-92-18-66-34-35-91-100-52-10-40-57-106-73-79
    14 50-13-21-86-81-105-83-3-9-92-64-36-4-107-77-5-11-109-89-42-96-73
    15 35-15-83-34-54-6-81-86-28-13-68-17-27-94-101-55-87-56-39-65-61
    16 74-60-47-58-97-80-38-87-56-17-78-39-65-50-20-75-68-95-59-27-105-94
    17 79-64-73-109-11-106-89-96-42-57-10-70-84-104-40-25-7-49-35-83-94-27
    18 24-85-22-3-67-18-93-9-19-23-82-33-31-51-46-21-32-17-39-55-63-12
    19 74-60-47-58-97-80-38-12-63-53-62-90-49-52-89-64-36-4-107-77
    20 84-7-10-70-104-25-40-37-57-42-106-73-89-109-11-79-36-108-72-92-18-66
    21 90-53-8-91-35-2-15-34-93-67-3-66-18-9-92-44-82-33-31-51-46-21
    22 83-105-94-6-81-85-24-86-28-21-27-101-55-87-56-65-50-75-17-78-0-1
    23 28-13-50-65-56-0-87-97-80-45-38-58-47-103-12-63-55-39-17-50-68
    24 96-64-109-11-5-42-57-106-73-89-52-91-90-35-93-98-18-9-19-33-76
    25 89-42-106-57-37-104-7-49-35-15-54-6-86-24-19-82-44-72-79
    26 22-85-54-6-66-18-9-19-3-81-86-51-71-88-102-76-69-30-26-82-33-31
    27 96-89-109-73-42-106-11-64-79-48-92-67-3-93-100-18-9-19-33-14-102
    28 23-82-26-72-92-48-108-5-77-4-36-64-89-52-49-90-8-53-38-63-80-58
    29 101-55-39-87-80-0-56-65-78-17-95-59-21-86-51-102-76-69-30-43-29-26
    30 22-85-54-6-66-18-100-93-98-67-3-34-35-90-8-62-12-38-80-55-101-27
    31 62-53-38-58-80-55-39-78-95-17-27-94-101-55-87-56-39-65-61
    32 36-48-92-44-82-23-9-3-83-2-45-87-38-53-90-49-52-89-64-109-73-89
    33 106-11-73-96-42-5-77-4-107-108-48-92-64-79-72-43-44-82-19-24-86-21
    34 62-91-52-100-18-98-93-35-34-66-6-24-31-23-9-19-102-88-71-51-46
    35 47-62-103-12-38-58-97-1-61-56-65-78-95-27-94-85-19-82-26-30-44
    36 50-95-78-17-68-59-27-94-83-35-49-52-89-106-73-79-72-44-82-99-76
    37 9-3-66-85-22-3-93-100-52-10-70-16-74-58-97-0-61-1-87-38-53
    38 36-48-92-67-3-15-83-34-66-18-93-9-19-33-76-31-24-6-94-101-55-39
    39 66-85-6-81-86-46-28-21-13-32-20-95-17-27-94-105-83-35-8-62-91
    40 107-77-4-36-5-42-11-96-73-106-57-40-7-103-12-63-55-39-17-50-68
    41 100-18-67-93-9-92-72-36-4-77-5-107-108-79-48-44-30-43-26-82-19-24
    42 62-91-52-100-18-98-93-35-34-66-6-24-54-3-19-33-99-69-30-29-43
    43 83-15-35-90-49-91-62-12-103-70-10-52-100-93-3-22-85-66-34-35
    44 2-83-3-34-54-66-6-94-105-81-86-46-21-68-20-32-13-28-59-95-27-101
    45 86-6-54-22-3-9-19-23-33-99-69-14-76-31-24-85-94-101-55-39-87-1-97
    46 69-43-29-26-44-92-18-9-19-102-88-71-51-86-21-59-95-78-0-1
    47 52-100-91-8-35-15-2-34-66-3-67-98-93-9-18-92-64-109-73-79-72
    48 24-6-54-22-66-85-3-98-67-92-44-43-69-30-26-82-33-31-51-46-21-32
    49 57-42-96-11-79-36-5-107-77-4-108-48-44-26-82-19-24-86-21-13-32-59
    50 75-68-21-32-50-65-56-61-0-80-63-45-2-15-18-92-48-107-77-5-11-89
    51 17-68-59-32-95-27-94-83-35-15-3-9-18-100-52-10-70-41-12-63-55-39
    52 38-80-45-87-56-61-0-1-97-58-60-12-62-91-52-89-64-36-107-48-72-26
    53 71-88-51-102-33-99-14-69-30-29-43-72-79-73-106-57-37-104-41-12-63-55
    54 15-34-54-85-3-93-67-98-18-66-22-31-23-9-19-102-88-51-86-21-27-101
    55 33-19-3-34-66-93-100-52-89-109-73-11-42-96-64-92-9-3-81-94-105-27
    56 41-16-47-74-58-80-55-87-0-1-61-65-39-55-101-94-81-85-24-19-33-76
     | Show Table
    DownLoad: CSV

    Table A7.  Best route sets for the operator constructed by the proposed DE algorithm for Mumford3 network

    Routes Sequence of Routes
    1 122-94-27-118-46-11-0-101-26-126-92-85-20-50-76-19-13-83
    2 29-36-24-87-61-102-108-115-3-96-78-114-23-2-37
    3 99-48-79-0-7-40-44-82-88-39
    4 35-91-82-95-13-83-50-92-76-20
    5 105-42-89-31-39-88-82-40-50-76
    6 66-53-23-2-48-126-92-83-13-19
    7 38-25-88-121-125-91-82-40-50-20
    8 81-9-66-80-29-122-52-51-54-30
    9 81-27-94-29-5-36-58-104-43-28
    10 107-12-3-96-71-100-14-106-108-102
    11 82-116-101-0-48-2-49-72-9-5
    12 105-42-43-104-59-113-90-103-98-17
    13 27-94-122-29-36-80-5-24-87-110-68-34-56
    14 105-42-89-31-39-88-82-40-50-13
    15 116-120-7-11-0-77-67-1-27-29
    16 105-58-36-5-24-117-86-109-69-10-4-18
    17 81-94-29-9-66-53-23-2-79-0
    18 44-65-50-83-13-95-123-35-91-25-38-54-51-47
    19 85-20-92-126-48-79-0-101-88-121
    20 60-55-99-73-6-112-62-16-114-78-71-100-14-108-61-106
    21 81-29-80-63-105-42-28-103-43-104-18-10
    22 15-3-96-100-12-78-114-74-23-72-124
    23 31-38-52-27-1-77-67-46-39-25
    24 74-49-124-70-66-9-29-5-24-117
    25 48-26-93-44-40-65-116-82-88-39
    26 122-94-29-27-67-11-79-48-97-2
    27 102-108-115-106-61-53-23-2-48-73
    28 92-76-20-85-75-60-73-6-32-45
    29 83-13-95-123-35-91-25-38-54-51
    30 98-42-104-105-63-36-5-24-87-61-115-3-12-56
    31 38-31-54-51-52-118-27-122-29-80-66-124-9
    32 23-2-11-1-118-52-51-47-31-54
    33 57-21-8-119-22-30-41-33-31-38-52-122
    34 99-48-79-2-74-66-80-5-24-86
    35 84-68-3-71-96-78-100-14-61-102
    36 102-87-84-68-34-56-15-12-3-115-61-14-72-66
    37 81-27-29-94-122-52-51-54-30-38
    38 72-124-70-66-9-80-63-105-104-18-69-103-109-10-86
    39 43-105-104-59-89-31-38-25-91-35
    40 110-84-68-56-15-12-107-3-100-14
    41 94-29-36-5-63-105-42-98-90-17
    42 81-1-67-11-0-120-44-40-65-95
    43 9-29-80-66-74-114-78-3-56-34
    44 2-79-11-46-39-25-41-8-35-21
    45 103-28-64-111-69-10-109-4-43-90-113-42
    46 97-79-48-2-23-53-61-87-84-110
    47 66-70-72-49-2-79-0-101-88-91
    48 81-27-94-122-52-51-54-30-31-39
    49 43-90-59-42-104-18-109-10-86-117-24-5-58-105
    50 9-29-80-66-74-114-2-11-46-39
    51 84-87-110-68-12-107-15-3-71-96-78-114-74-37-79-11-7-101-26
    52 0-48-79-2-49-66-80-29-122-52
    53 111-64-4-18-103-109-43-17-89-52
    54 122-94-29-36-5-58-104-59-113-90
    55 27-81-67-46-39-31-54-51-47-31
    56 0-48-79-2-49-72-9-63-105-43
    57 31-39-88-82-40-92-76-20-19-85
    58 98-113-59-90-103-69-10-18-117-86
    59 55-60-112-6-45-73-126-48-0-77-1-118
    60 109-86-117-18-10-4-43-42-89-31
     | Show Table
    DownLoad: CSV

    Table A8.  Best route sets for the passenger constructed by the proposed DE algorithm for Mumford3 network

    Routes Sequence of Routes
    1 23-114-16-62-112-6-73-48-26-7-40-82-44-93-88-39-46-1-118-27-29-5-24-87-110
    2 27-118-67-81-80-70-72-74-2-23-37-97-11-7-40-50-13-19-85-75-20-32-60-73-48
    3 12-3-78-114-74-23-37-2-11-46-39-30-22-21-35-91-25-38-31-89-59-104-58-63-5
    4 46-1-11-2-74-49-66-14-100-12-56-15-3-78-114-16-55-60-32-20-85-19-13-83-92
    5 57-8-21-125-22-41-30-39-46-11-2-74-23-53-61-108-102-24-5-63-36-9-80-81-67
    6 17-98-113-89-31-39-88-93-44-40-95-65-50-20-19-32-45-60-6-73-126-92-76-85-75
    7 41-33-54-31-89-59-104-43-105-63-80-66-74-114-16-112-60-73-48-2-23-53-61-102-87
    8 13-92-85-75-60-55-45-73-48-2-49-72-9-63-105-43-69-10-86-24-102-61-14-100-78
    9 102-106-115-61-14-100-71-3-96-78-114-23-37-74-2-79-0-120-65-101-88-82-40-92-85
    10 29-81-94-122-52-27-67-46-118-1-11-0-48-73-60-75-20-50-40-82-91-125-22-8-21
    11 63-36-80-66-49-124-23-72-9-5-24-102-61-87-84-68-56-12-107-3-96-100-71-78-114
    12 86-10-69-111-28-64-98-90-103-43-42-89-31-39-88-82-40-50-76-20-75-85-19-13-83
    13 27-94-122-29-36-80-5-24-87-110-68-34-56-3-78-114-2-79-0-101-88-121-125-123-91
    14 111-64-103-69-109-10-18-104-58-63-9-72-49-2-97-48-79-11-67-27-29-5-24-87-110
    15 70-9-81-27-1-11-2-74-23-53-61-106-108-102-24-5-29-122-52-51-54-30-31-39-88
    16 102-24-5-29-27-1-46-39-25-41-57-22-125-21-8-35-91-121-88-101-7-120-116-93
    17 63-36-9-72-23-37-74-114-2-97-0-48-26-101-88-125-21-119-22-30-39-46-11-7-65
    18 35-8-22-119-21-125-121-25-91-123-95-65-7-11-2-114-78-12-100-14-66-80-29-94-81
    19 39-46-11-2-23-53-14-106-108-61-102-87-110-84-56-15-107-3-78-71-96-100-12-68-34
    20 70-72-124-49-2-74-66-9-63-80-36-5-29-122-27-1-67-11-77-0-120-26-7-40-50
    21 9-72-66-53-23-114-2-11-26-7-101-120-116-95 40 44 82 65 50 76 85 75 20 32 126
    22 62-16-55-6-73-48-97-2-23-74-72-66-14-108-115-3-78-71-96-100-12-56-15-107
    23 74-49-23-72-66-70-9-5-24-36-29-27-67-46-118-122-52-38-30-22-119-8-41-25-88
    24 105-58-63-36-24-102-61-115-106-14-108-87-84-110-68-56-15-107-3-96-100-12-78-114-2
    25 47-51-89-113-59-42-104-43-105-63-80-66-74-114-16-112-60-73-48-2-23-53-61-102-87
    26 96-71-78-12-68-84-56-3-100-14-61-87-106-115-108-102-24-5-58-104-43-98-42-89-31
    27 102-87-84-68-34-56-15-12-3-115- 61-14-72-66-53-23-114-16-62-112-6-73-48-26-101
    28 23-72-124-66-9-80-63-105-58-104-18-117-24-87-110-68-3-78-114-16-55-60-32-20-85
    29 107-15-3-96-71-78-114-2-37-97-0-7-11-1-81-80-66-14-100-12-56-34-68-84-87
    30 1-77-11-2-37-79-48-26-120-65-116-50-83-13-92-20-32-60-55-16-114-78-3-68-110
    31 56-34-68-84-110-87-106-108-61-102-24-117-86-18-69-43-98-113-90-17-42-104-58-36-5
    32 79-37-74-114-78-71-100-12-68-34-56-15-3-115-61-102-24-5-58-104-43-98-42-89-31
    33 82-91-25-39-46-118-1-11-0-77-67-27-52-51-89-113-17-59-90-42-43-98-64-103-28
    34 56-34-68-12-107-15-3-100-14-72-70-9-36-80-81-122-27-1-11-0-120-26-7-40-50
    35 33-38-25-91-121-88-101-93-7-26-40-82-116-44-95-123-35-8-119-22-30-39-46-11-2
    36 43-90-59-113-98-103-4-10-117-24-5-58-63-80-66-124-72-23-37-74-49-2-48-73-60
    37 7-93-120-116-40-44-65-95-13-76-85-19-32-75-60-73-48-0-11-1-118-52-89-17-64
    38 107-3-56-15-12-78-71-100-14-108-87-106-115-61-102-24-36-9-72-66-53-23-2-79-0
    39 7-0-48-79-2-23-53-61-87-110-68-3-78-114-16-55-60-32-20-85-92-40-82-88-39
    40 9-72-66-53-23-114-2-11-26-7-101-120-116-50-83-92-76-85-19-32-60-6-73-48-126
    41 117-10-86-24-5-9-72-66-53-23-114-78-96-71-100-14-106-87-108-115-3-107-15-56-34
    42 32-75-60-73-48-0-11-1-118-52-89-17-98-90-42-104-58-63-80-70-72-49-66-9-124
    43 107-3-71-78-100-14-72-23-53-61-108-115-106-102-24-5-9-63-58-104-59-17-89-31-39
    44 41-57-22-125-121-25-88-101-116-82-65-40-26-120-7-0-97-37-79-48-2-11-46-39-30
    45 29-122-27-118-52-38-39-88-101-93-116-82-40-92-85-19-13-50-20-75-60-55-99-48-0
    46 5-80-63-36-29-81-9-124-49-72-70-66-14-100-3-107-12-56-68-110-84-87-61-115-108
    47 5-63-9-29-81-1-77-11-2-97-37-23-74-49-124-70-80-36-24-117-10-69-103-111-28
    48 29-122-27-118-52-38-39-88-101-93-116-82-65-7-0-11-1-81-80-63-58-104-59-89-31
    49 95-116-93-101-88-121-25-38-52-122-27-67-1-46-11-79-48-0-97-37-23-53-66-14-100
    50 124-23-53-14-66-70-80-9-63-58-36-29-81-27-1-11-2-74-114-78-3-56-34-68-12
    51 40-50-76-19-20-75-60-112-55-45-6-73-99-48-0-77-1-81-80-63-58-104-59-89-31
    52 81-122-29-27-1-67-46-11-77-0-97-37-23-114-74-72-9-36-24-86-10-69-103-4-43
    53 62-16-55-60-45-112-32-19-85-75-20-92-126-48-0-101-116-82-95-65-7-11-2-114-78
    54 27-29-5-58-105-63-9-124-66-72-74-2-114-78-12-107-3-100-14-53-61-87-84-110-68
    55 66-53-23-114-16-55-112-45-6-73-99-48-2-49-72-9-5-24-117-18-10-86-109-4-64
    56 8-22-125-123-35-91-88-101-0-79-2-114-78-3-15-56-34-68-110-84-87-61-14-108-106
    57 107-15-12-78-96-71-3-56-68-84-87-106-115-108-102-61-14-53-23-2-11-46-39-30-22
    58 84-110-68-34-56-3-71-78-114-74-49-23-2-79-0-101-88-91-123-125-22-8-41-25-38
    59 78-96-3-56-15-12-100-14-108-61-115-106-87-102-24-5-80-70-9-72-49-2-48-73-60
    60 112-60-6-73-99-55-16-114-78-3-71-96-100-12-68-56-84-87-24-5-29-122-52-38-30
     | Show Table
    DownLoad: CSV
  •   R. O. Arbex  and  C. B. da Cunha , Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm, Transportation Research Part B: Methodological, 81 (2015) , 355-376.  doi: 10.1016/j.trb.2015.06.014.
      M. H. Baaj  and  H. S. Mahmassani , An AI-based approach for transit route system planning and design, Journal of Advanced Transportation, 25 (1991) , 187-209.  doi: 10.1002/atr.5670250205.
      M. H. Baaj  and  H. S. Mahmassani , Hybrid route generation heuristic algorithm for the design of transit networks, Transportation Research Part C: Emerging Technologies, 3 (1995) , 31-50.  doi: 10.1016/0968-090X(94)00011-S.
      M. Bagherian , S. Massah  and  S. Kermanshahi , A swarm based method for solving transit network design problem, Proceedings of the 36th Australasian Transport Research Forum, (2013) , 2-4. 
      D. Beasley , D.R. Bull  and  R.R. Martin , An overview of genetic algorithms: part 2, research topics, University Computing, 15 (1993) , 170-181. 
      M. Bielli , M. Caramia  and  P. Carotenuto , Genetic algorithms in bus network optimization, Transportation Research Part C: Emerging Technologies, 10 (2002) , 19-34.  doi: 10.1016/S0968-090X(00)00048-6.
      A. T. Buba  and  L. S. Lee , Differential evolution for urban transit routing problem, Journal of Computer and Communications, 4 (2016) , 11-25.  doi: 10.4236/jcc.2016.414002.
      A. Ceder  and  N. H. M. Wilson , Bus network design, Transportation Research Part B: Methodological, 20 (1986) , 331-344.  doi: 10.1016/0191-2615(86)90047-0.
      P. Chakroborty , Genetic algorithms for optimal urban transit network design, Computer-Aided Civil and Infrastructure Engineering, 18 (2003) , 184-200.  doi: 10.1111/1467-8667.00309.
      P. Chakroborty  and  T. Wivedi , Optimal route network design for transit systems using genetic algorithms, Engineering Optimization, 34 (2002) , 83-100.  doi: 10.1080/03052150210909.
      J. S. C. Chew, L. S. Lee and H. V. Seow, Genetic algorithm for biobjective urban transit routing problem, Journal of Applied Mathematics, 2013 (2013), Article ID 698645, 15 pages.
      S. Chien , Z. Yang  and  E. Hou , Genetic algorithm approach for transit route planning and design, Journal of Transportation Engineering, 127 (2001) , 200-207.  doi: 10.1061/(ASCE)0733-947X(2001)127:3(200).
      L. Fan, Metaheuristic Methods for the Urban Transit Routing Problem, Ph. D thesis, Cardiff University (United Kingdom), 2009.
      L. Fan  and  C. L. Mumford , A metaheuristic approach to the urban transit routing problem, Journal of Heuristics, 16 (2010) , 353-372.  doi: 10.1007/s10732-008-9089-8.
      L. Fan , C. L. Mumford  and  D. Evans , A simple multi-objective optimization algorithm for the urban transit routing problem, IEEE Congress on Evolutionary Computation, (2009) , 1-7.  doi: 10.1109/CEC.2009.4982923.
      W. Fan  and  R. B. Machemehl , Optimal transit route network design problem with variable transit demand: genetic algorithm approach, Journal of Transportation Engineering, 132 (2006) , 40-51.  doi: 10.1061/(ASCE)0733-947X(2006)132:1(40).
      W. Fan  and  R. B. Machemehl , Tabu search strategies for the public transportation network optimizations with variable transit demand, Computer-Aided Civil and Infrastructure Engineering, 23 (2008) , 502-520.  doi: 10.1111/j.1467-8667.2008.00556.x.
      J. Guan , H. Yang  and  S. Wirasinghe , Simultaneous optimization of transit line configuration and passenger line assignment, Transportation Research Part B: Methodological, 40 (2006) , 885-902.  doi: 10.1016/j.trb.2005.12.003.
      A. Jaszkiewicz , On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study, European Journal of Operational Research, 158 (2004) , 418-433.  doi: 10.1016/j.ejor.2003.06.015.
      M. P. John, C. L. Mumford and R. Lewis, An improved multi-objective algorithm for the urban transit routing problem, in Evolutionary Computation in Combinatorial Optimisation, EVOCOP Lecture Series in Computer Science (eds. C. Blum and G. Ochoa), Springer, 2014. doi: 10.1007/978-3-662-44320-0_5.
      P. N. Kechagiopoulos  and  G. N. Beligiannis , Solving the urban transit routing problem using a particle swarm optimization based algorithm, Applied Soft Computing, 21 (2014) , 654-676.  doi: 10.1016/j.asoc.2014.04.005.
      F. Kiliç  and  M. Gök , A demand based route generation algorithm for public transit network design, Computers & Operations Research, 51 (2014) , 21-29.  doi: 10.1016/j.cor.2014.05.001.
      H. N. Koutsopoulos and N. H. M. Wilson, Determination of headways as a function of time varying characteristics on a transit network, in Computer Scheduling of Public Transport 2, (1985), 391–414.
      T. I. Magnanti  and  R. T. Wong , Network design and transportation planning: models and algorithms, Transportation Science, 18 (1984) , 1-55.  doi: 10.1287/trsc.18.1.1.
      C. E. Mandl , Evaluation and optimization of urban public transportation networks, European Journal of Operational Research, 5 (1980) , 396-404.  doi: 10.1016/0377-2217(80)90126-5.
      E. Mazloumi , M. Mesbah , A. Ceder , S. Moridpour  and  G. Currie , Efficient transit schedule design of timing points: a comparison of ant colony and genetic algorithms, Transportation Research Part B: Methodological, 46 (2012) , 217-234.  doi: 10.1016/j.trb.2011.09.010.
      C. L. Mumford , New heuristic and evolutionary operators for the multi-objective urban transit routing problem, IEEE Congress on Evolutionary Computation, (2013) , 939-946.  doi: 10.1109/CEC.2013.6557668.
      A. T. Murray , A coverage model for improving public transit system accessibility and expanding access, Annals of Operations Research, 123 (2003) , 143-156.  doi: 10.1023/A:1026123329433.
      M. A. Nayeem , M. K. Rahman  and  M.S. Rahman , Transit network design by genetic algorithm with elitism, Transportation Research Part C: Emerging Technologies, 46 (2014) , 30-45.  doi: 10.1016/j.trc.2014.05.002.
      G. Newell , Some issues relating to the optimal design of bus routes, Transportation Science, 13 (1979) , 20-35.  doi: 10.1287/trsc.13.1.20.
      S. Ngamchai  and  D. J. Lovell , Optimal time transfer in bus transit route network design using a genetic algorithm, Journal of Transportation Engineering, 129 (2003) , 510-521.  doi: 10.1061/(ASCE)0733-947X(2003)129:5(510).
      M. Nikolić  and  D. Teodorović , Transit network design by bee colony optimization, Expert Systems with Applications, 40 (2013) , 5945-5955. 
      J. Pacheco , A. Alvarez , S. Casado  and  J. L. González-Velarde , A tabu search approach to an urban transport problem in northern Spain, Computers & Operations Research, 36 (2009) , 967-979.  doi: 10.1016/j.cor.2007.12.002.
      S. Pattnaik , S. Mohan  and  V. Tom , Urban bus transit route network design using genetic algorithm, Journal of Transportation Engineering, 124 (1998) , 368-375.  doi: 10.1061/(ASCE)0733-947X(1998)124:4(368).
      S. Schéele , A supply model for public transit services, Transportation Research Part B: Methodological, 14 (1980) , 133-146. 
      R. Storn and K. Price, Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report, International Computer Science Institute Berkeley, CA, 1995.
      Q. K. Wan  and  H. K. Lo , A mixed integer formulation for multiple-route transit network design, Journal of Mathematical Modelling and Algorithms, 2 (2003) , 299-308.  doi: 10.1023/B:JMMA.0000020425.99217.cd.
      F. Zhao and A. Gan, Optimization of transit network to minimize transfer, Final Report BD015-02 Research Office Florida Department of Transportation, 2003.
  • 加载中

Figures(9)

Tables(13)

SHARE

Article Metrics

HTML views(2308) PDF downloads(458) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return