September  2018, 8(3): 377-387. doi: 10.3934/naco.2018024

Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization

1. 

Department of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long 9, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia

2. 

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3. 

Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

* Corresponding author: Hong Seng Sim

Received  May 2017 Revised  March 2018 Published  June 2018

Fund Project: The first author is supported by Yayasan Sultan Iskandar Johor 2014.

In this paper, we aim to propose some spectral gradient methods via variational technique under log-determinant norm. The spectral parameters satisfy the modified weak secant relations that inspired by the multistep approximation for solving large scale unconstrained optimization. An executable code is developed to test the efficiency of the proposed method with spectral gradient method using standard weak secant relation as constraint. Numerical results are presented which suggest a better performance has been achieved.

Citation: Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024
References:
[1]

N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10 (2008), 147-161.   Google Scholar

[2]

J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[3]

I. BongartzA. R. ConnN. I. M. Gould and Ph. L. Toint, CUTE: constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 21 (1995), 123-160.  doi: 10.1145/200979.201043.  Google Scholar

[4]

R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.  doi: 10.1137/0726042.  Google Scholar

[5]

J. E. Dennis and H. Wolkowicz, Sizing and least change secant methods, SIAM Journal on Numerical Analysis, 30 (1993), 1291-1313.  doi: 10.1137/0730067.  Google Scholar

[6]

J. A. Ford and I. A. Moghrabi, Multi-step quasi-Newton methods for optimization, Journal of Computational and Applied Mathematics, 50 (1994), 305-323.  doi: 10.1016/0377-0427(94)90309-3.  Google Scholar

[7]

W. La CruzJ. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1449-1466.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18 (2003), 583-599.  doi: 10.1080/10556780310001610493.  Google Scholar

[9]

D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503-528.  doi: 10.1007/BF01589116.  Google Scholar

[10]

M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal of Optimization, 7 (1997), 26-33.  doi: 10.1137/S1052623494266365.  Google Scholar

[11]

M. ZhuJ. L. Nazareth and H. Wolkowicz, The quasi-Cauchy relation and diagonal updating, SIAM Journal on Optimization, 4 (1999), 1192-1204.  doi: 10.1137/S1052623498331793.  Google Scholar

show all references

References:
[1]

N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10 (2008), 147-161.   Google Scholar

[2]

J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[3]

I. BongartzA. R. ConnN. I. M. Gould and Ph. L. Toint, CUTE: constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 21 (1995), 123-160.  doi: 10.1145/200979.201043.  Google Scholar

[4]

R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.  doi: 10.1137/0726042.  Google Scholar

[5]

J. E. Dennis and H. Wolkowicz, Sizing and least change secant methods, SIAM Journal on Numerical Analysis, 30 (1993), 1291-1313.  doi: 10.1137/0730067.  Google Scholar

[6]

J. A. Ford and I. A. Moghrabi, Multi-step quasi-Newton methods for optimization, Journal of Computational and Applied Mathematics, 50 (1994), 305-323.  doi: 10.1016/0377-0427(94)90309-3.  Google Scholar

[7]

W. La CruzJ. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1449-1466.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18 (2003), 583-599.  doi: 10.1080/10556780310001610493.  Google Scholar

[9]

D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503-528.  doi: 10.1007/BF01589116.  Google Scholar

[10]

M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal of Optimization, 7 (1997), 26-33.  doi: 10.1137/S1052623494266365.  Google Scholar

[11]

M. ZhuJ. L. Nazareth and H. Wolkowicz, The quasi-Cauchy relation and diagonal updating, SIAM Journal on Optimization, 4 (1999), 1192-1204.  doi: 10.1137/S1052623498331793.  Google Scholar

Figure 1.  Performance Profiling for the Modified Multiple Spectral Gradient Methods and Standard Multiple Spectral Gradient Method in terms of Number of Iterations.
Figure 2.  Performance Profiling for the Modified Multiple Spectral Gradient Methods and Standard Multiple Spectral Gradient Method in terms of Number of Function Calls.
Figure 3.  Performance Profiling for the Modified Multiple Spectral Gradient Methods and Standard Multiple Spectral Gradient Method in terms of CPU Time.
[1]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[2]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[3]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[4]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[5]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[6]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[7]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[8]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[9]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[10]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[11]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[12]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021040

[13]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[14]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[15]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[16]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[17]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[18]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[19]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054

[20]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

 Impact Factor: 

Metrics

  • PDF downloads (180)
  • HTML views (244)
  • Cited by (0)

[Back to Top]