December  2018, 8(4): 413-440. doi: 10.3934/naco.2018026

Optimization problems with orthogonal matrix constraints

1. 

Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Highway Dayton, OH 45435, U.S.A

2. 

Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, USA

* Corresponding author: Manil T. Mohan

M. T. Mohan's current address Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247 667, INDIA

Received  May 2017 Revised  August 2018 Published  September 2018

The optimization problems involving orthogonal matrices have been formulated in this work. A lower bound for the number of stationary points of such optimization problems is found and its connection to the number of possible partitions of natural numbers is also established. We obtained local and global optima of such problems for different orders and showed their connection with the Hadamard, conference and weighing matrices. The application of general theory to some concrete examples including maximization of Shannon, Rény, Tsallis and Sharma-Mittal entropies for orthogonal matrices, minimum distance orthostochastic matrices to uniform van der Waerden matrices, Cressie-Read and K-divergence functions for orthogonal matrices, etc are also discussed. Global optima for all orders has been found for the optimization problems involving unitary matrix constraints.

Citation: K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026
References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

K. T. Arasu, M. T. Mohan, A. Pathak and R. J. Ramya, Entropy optimal orthogonal matrices, Submitted for Journal Publication, 2018. Google Scholar

[3]

K. T. Arasu and M. T. Mohan, Entropy of orthogonal matrices and minimum distance orthostochastic matrices from the uniform van der Waerden matrix, Submitted for Journal Publication, 2018. Google Scholar

[4]

R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1997 doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[5]

O. Chterental and D. Ž. Ɖoković, On orthostochastic, unistochastic and qustochastic matrices, Linear Algebra and its Applications, 428 (2008), 1178-1201.  doi: 10.1016/j.laa.2007.09.022.  Google Scholar

[6]

N. Cressie and T. R. C. Read, Multinomial goodness of fit, Journal of the Royal Statistical Society, B, 46 (1984), 440-464.   Google Scholar

[7]

P. DelsarteJ. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal Ⅱ, Canadian Journal of Mathematics, ⅩⅩⅩⅢ (1971), 816-832.  doi: 10.4153/CJM-1971-091-x.  Google Scholar

[8]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal of Matrix Analysis and Applications, 20 (1999), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[9]

H. G. GadiyarK. M. Sangeeta MainiR. Padma and H. S. Sharatchandra, Entropy and Hadamard matrices, Journal of Physics A: Mathematical and General, 36 (2003), 109-112.  doi: 10.1088/0305-4470/36/7/103.  Google Scholar

[10]

J. Gallier, Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras, Chapter 14, in "Geometric Methods and Applications", the series Texts in Applied Mathematicsolume, 38 (2001), 367–414. doi: 10.1007/978-1-4613-0137-0_14.  Google Scholar

[11]

A. V. GeramitaJ. M. Geramita and J. Seberry, Orthogonal designs, Linear and Multilinear Algebra, 3 (1976), 381-206.  doi: 10.1080/03081087608817121.  Google Scholar

[12]

A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.  Google Scholar

[13]

B. K. P. Horn, Closed form solution of absolute orientation using unit quaternions, Journal of the Optical Society A, 4 (1987), 629-642.  doi: 10.1364/JOSAA.4.000629.  Google Scholar

[14]

Z. Q. Ma, Group Theory for Physicists, World Scientific, Singapore 2007. doi: 10.1142/6596.  Google Scholar

[15]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[16]

M. T. Mohan, On some p−almost Hadamard matrices, Accepted in Operators and Matrices, 2018. Google Scholar

[17]

H. Nakzato, Set of 3 × 3 orthostochastic matrices, Nihonkai Mathematics Journal, 7 (1996), 83-100.   Google Scholar

[18]

A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality constraints, Mathematical Programming, 109 (2007), 283-317.  doi: 10.1007/s10107-006-0033-0.  Google Scholar

[19]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd ed. Springer, New York, 2006  Google Scholar

[20]

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.  Google Scholar

[21]

D. R. Stinson Combinatorial Designs: Constructions and Analysis, Springer-Verlag New York, Inc., 2004.  Google Scholar

[22]

B. D. Sharma and D. P. Mittal, New non-additive measures of entropy for discrete probability distributions, Journal of Mathematical Sciences, 10 (1975), 28-40.   Google Scholar

[23]

F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD Thesis, https://arXiv.org/abs/1110.5590, 2011. Google Scholar

[24]

V. WeberJ. Vande VondeleJ. Hütter and A. M. Niklasson, Direct energy functional minimization under orthogonality constraints, The Journal of Chemical Physics, 128 (2008), 84-113.  doi: 10.1063/1.2841077.  Google Scholar

[25]

Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program., Ser. A, 142 (2013), 397-434.  doi: 10.1007/s10107-012-0584-1.  Google Scholar

[26]

K. ŻyczkowskiM. KuśW. Słomczyński and H.-J. Sommers, Random unistochastic matrices, Journal of Physics A: Mathematical and General, 36 (2003), 3425-3450.  doi: 10.1088/0305-4470/36/12/333.  Google Scholar

show all references

References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

K. T. Arasu, M. T. Mohan, A. Pathak and R. J. Ramya, Entropy optimal orthogonal matrices, Submitted for Journal Publication, 2018. Google Scholar

[3]

K. T. Arasu and M. T. Mohan, Entropy of orthogonal matrices and minimum distance orthostochastic matrices from the uniform van der Waerden matrix, Submitted for Journal Publication, 2018. Google Scholar

[4]

R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1997 doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[5]

O. Chterental and D. Ž. Ɖoković, On orthostochastic, unistochastic and qustochastic matrices, Linear Algebra and its Applications, 428 (2008), 1178-1201.  doi: 10.1016/j.laa.2007.09.022.  Google Scholar

[6]

N. Cressie and T. R. C. Read, Multinomial goodness of fit, Journal of the Royal Statistical Society, B, 46 (1984), 440-464.   Google Scholar

[7]

P. DelsarteJ. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal Ⅱ, Canadian Journal of Mathematics, ⅩⅩⅩⅢ (1971), 816-832.  doi: 10.4153/CJM-1971-091-x.  Google Scholar

[8]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal of Matrix Analysis and Applications, 20 (1999), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[9]

H. G. GadiyarK. M. Sangeeta MainiR. Padma and H. S. Sharatchandra, Entropy and Hadamard matrices, Journal of Physics A: Mathematical and General, 36 (2003), 109-112.  doi: 10.1088/0305-4470/36/7/103.  Google Scholar

[10]

J. Gallier, Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras, Chapter 14, in "Geometric Methods and Applications", the series Texts in Applied Mathematicsolume, 38 (2001), 367–414. doi: 10.1007/978-1-4613-0137-0_14.  Google Scholar

[11]

A. V. GeramitaJ. M. Geramita and J. Seberry, Orthogonal designs, Linear and Multilinear Algebra, 3 (1976), 381-206.  doi: 10.1080/03081087608817121.  Google Scholar

[12]

A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.  Google Scholar

[13]

B. K. P. Horn, Closed form solution of absolute orientation using unit quaternions, Journal of the Optical Society A, 4 (1987), 629-642.  doi: 10.1364/JOSAA.4.000629.  Google Scholar

[14]

Z. Q. Ma, Group Theory for Physicists, World Scientific, Singapore 2007. doi: 10.1142/6596.  Google Scholar

[15]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[16]

M. T. Mohan, On some p−almost Hadamard matrices, Accepted in Operators and Matrices, 2018. Google Scholar

[17]

H. Nakzato, Set of 3 × 3 orthostochastic matrices, Nihonkai Mathematics Journal, 7 (1996), 83-100.   Google Scholar

[18]

A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality constraints, Mathematical Programming, 109 (2007), 283-317.  doi: 10.1007/s10107-006-0033-0.  Google Scholar

[19]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd ed. Springer, New York, 2006  Google Scholar

[20]

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.  Google Scholar

[21]

D. R. Stinson Combinatorial Designs: Constructions and Analysis, Springer-Verlag New York, Inc., 2004.  Google Scholar

[22]

B. D. Sharma and D. P. Mittal, New non-additive measures of entropy for discrete probability distributions, Journal of Mathematical Sciences, 10 (1975), 28-40.   Google Scholar

[23]

F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD Thesis, https://arXiv.org/abs/1110.5590, 2011. Google Scholar

[24]

V. WeberJ. Vande VondeleJ. Hütter and A. M. Niklasson, Direct energy functional minimization under orthogonality constraints, The Journal of Chemical Physics, 128 (2008), 84-113.  doi: 10.1063/1.2841077.  Google Scholar

[25]

Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program., Ser. A, 142 (2013), 397-434.  doi: 10.1007/s10107-012-0584-1.  Google Scholar

[26]

K. ŻyczkowskiM. KuśW. Słomczyński and H.-J. Sommers, Random unistochastic matrices, Journal of Physics A: Mathematical and General, 36 (2003), 3425-3450.  doi: 10.1088/0305-4470/36/12/333.  Google Scholar

Figure 1.  n versus d graph
Figure 2.  Rényi entropy of $2\times 2$ orthogonal matrices
Figure 3.  Sharma-Mittal entropy of $2\times 2$ orthogonal matrices
Figure 4.  Tsallis entropy of $2\times 2$ orthogonal matrices
Table 1.  1 $\leq n\leq $ 20.
$n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$ $n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$
$1$ ${\rm H}_1$ $0$ $11$ $\frac{1}{3}{\rm C}_{10}\oplus{\rm H}_1^*$ $1.054$
$2$ $\frac{1}{\sqrt{2}}{\rm H}_2$ $0$ $12$ $\frac{1}{2\sqrt{3}}{\rm H}_{12}$ $0$
$3$ ${\rm K}_3$ $0.471$ $13$ $\frac{1}{3}{\rm W}_{13, 9}$ $0.667$
$4$ $\frac{1}{2}{\rm H}_4$ $0$ $14$ $\frac{1}{\sqrt{13}}{\rm C}_{14}$ $0.277$
$5$ ${\rm K}_5$ $0.400$ $15$ ${\rm K}_3\otimes{\rm K}_5^{\dagger}$ $0.646$
$6$ $\frac{1}{\sqrt{5}}{\rm C}_6$ $0.447$ $16$ $\frac{1}{4}{\rm H}_{16}$ $0$
$7$ $\frac{1}{2}{\rm W}_{7, 4}$ $0.866$ $17$ $\frac{1}{3}{\rm W}_{17, 9}$ $0.943$
$8$ $\frac{1}{2\sqrt{2}}{\rm H}(8)$ $0$ $18$ $\frac{1}{\sqrt{17}}{\rm C}_{18}$ $0.243$
$9$ ${\rm K}_3\otimes{\rm K}_3$ $0.703$ $19$ $\frac{1}{\sqrt{17}}{\rm C}_{18}\oplus{\rm H}_1^*$ $1.029$
$10$ $\frac{1}{3}{\rm C}_{10}$ $0.333$ $20$ $\frac{1}{2\sqrt{5}}{\rm H}_{20}$ $0$
$^*$By Proposition 4.2, these orthogonal matrices are saddle points and not local minima. The weighing matrices ${\rm W}_{11, 4}$ and ${\rm W}_{19, 9}$ exists for orders $11$ and $19$, but they are also saddle points. The orthostochastic matrices corresponding to the orthogonal matrices $\frac{1}{2}{\rm W}_{11, 4}$ and $\frac{1}{3}{\rm W}_{19, 9}$ are at distances $1.323>1.054$ and $1.054>1.029$, respectively from the the uniform van der Waerden matrices ${\rm J}_{11}$ and ${\rm J}_{19}$. $^{\dagger}$For order $15$, weighing matrix ${\rm W}_{15, 9}$ exist, which are also local minima, by Proposition 4.11. But the orthostochastic matrix corresponding to the orthogonal matrix $\frac{1}{3}{\rm W}_{15, 9}$ is at a distance $0.817>0.646$, from the uniform van der Waerden matrix ${\rm J}_{15}$.
$n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$ $n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$
$1$ ${\rm H}_1$ $0$ $11$ $\frac{1}{3}{\rm C}_{10}\oplus{\rm H}_1^*$ $1.054$
$2$ $\frac{1}{\sqrt{2}}{\rm H}_2$ $0$ $12$ $\frac{1}{2\sqrt{3}}{\rm H}_{12}$ $0$
$3$ ${\rm K}_3$ $0.471$ $13$ $\frac{1}{3}{\rm W}_{13, 9}$ $0.667$
$4$ $\frac{1}{2}{\rm H}_4$ $0$ $14$ $\frac{1}{\sqrt{13}}{\rm C}_{14}$ $0.277$
$5$ ${\rm K}_5$ $0.400$ $15$ ${\rm K}_3\otimes{\rm K}_5^{\dagger}$ $0.646$
$6$ $\frac{1}{\sqrt{5}}{\rm C}_6$ $0.447$ $16$ $\frac{1}{4}{\rm H}_{16}$ $0$
$7$ $\frac{1}{2}{\rm W}_{7, 4}$ $0.866$ $17$ $\frac{1}{3}{\rm W}_{17, 9}$ $0.943$
$8$ $\frac{1}{2\sqrt{2}}{\rm H}(8)$ $0$ $18$ $\frac{1}{\sqrt{17}}{\rm C}_{18}$ $0.243$
$9$ ${\rm K}_3\otimes{\rm K}_3$ $0.703$ $19$ $\frac{1}{\sqrt{17}}{\rm C}_{18}\oplus{\rm H}_1^*$ $1.029$
$10$ $\frac{1}{3}{\rm C}_{10}$ $0.333$ $20$ $\frac{1}{2\sqrt{5}}{\rm H}_{20}$ $0$
$^*$By Proposition 4.2, these orthogonal matrices are saddle points and not local minima. The weighing matrices ${\rm W}_{11, 4}$ and ${\rm W}_{19, 9}$ exists for orders $11$ and $19$, but they are also saddle points. The orthostochastic matrices corresponding to the orthogonal matrices $\frac{1}{2}{\rm W}_{11, 4}$ and $\frac{1}{3}{\rm W}_{19, 9}$ are at distances $1.323>1.054$ and $1.054>1.029$, respectively from the the uniform van der Waerden matrices ${\rm J}_{11}$ and ${\rm J}_{19}$. $^{\dagger}$For order $15$, weighing matrix ${\rm W}_{15, 9}$ exist, which are also local minima, by Proposition 4.11. But the orthostochastic matrix corresponding to the orthogonal matrix $\frac{1}{3}{\rm W}_{15, 9}$ is at a distance $0.817>0.646$, from the uniform van der Waerden matrix ${\rm J}_{15}$.
[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[3]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[4]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[6]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

 Impact Factor: 

Metrics

  • PDF downloads (618)
  • HTML views (890)
  • Cited by (1)

Other articles
by authors

[Back to Top]