December  2018, 8(4): 413-440. doi: 10.3934/naco.2018026

Optimization problems with orthogonal matrix constraints

1. 

Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Highway Dayton, OH 45435, U.S.A

2. 

Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433, USA

* Corresponding author: Manil T. Mohan

M. T. Mohan's current address Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247 667, INDIA

Received  May 2017 Revised  August 2018 Published  September 2018

The optimization problems involving orthogonal matrices have been formulated in this work. A lower bound for the number of stationary points of such optimization problems is found and its connection to the number of possible partitions of natural numbers is also established. We obtained local and global optima of such problems for different orders and showed their connection with the Hadamard, conference and weighing matrices. The application of general theory to some concrete examples including maximization of Shannon, Rény, Tsallis and Sharma-Mittal entropies for orthogonal matrices, minimum distance orthostochastic matrices to uniform van der Waerden matrices, Cressie-Read and K-divergence functions for orthogonal matrices, etc are also discussed. Global optima for all orders has been found for the optimization problems involving unitary matrix constraints.

Citation: K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026
References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

K. T. Arasu, M. T. Mohan, A. Pathak and R. J. Ramya, Entropy optimal orthogonal matrices, Submitted for Journal Publication, 2018. Google Scholar

[3]

K. T. Arasu and M. T. Mohan, Entropy of orthogonal matrices and minimum distance orthostochastic matrices from the uniform van der Waerden matrix, Submitted for Journal Publication, 2018. Google Scholar

[4]

R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1997 doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[5]

O. Chterental and D. Ž. Ɖoković, On orthostochastic, unistochastic and qustochastic matrices, Linear Algebra and its Applications, 428 (2008), 1178-1201.  doi: 10.1016/j.laa.2007.09.022.  Google Scholar

[6]

N. Cressie and T. R. C. Read, Multinomial goodness of fit, Journal of the Royal Statistical Society, B, 46 (1984), 440-464.   Google Scholar

[7]

P. DelsarteJ. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal Ⅱ, Canadian Journal of Mathematics, ⅩⅩⅩⅢ (1971), 816-832.  doi: 10.4153/CJM-1971-091-x.  Google Scholar

[8]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal of Matrix Analysis and Applications, 20 (1999), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[9]

H. G. GadiyarK. M. Sangeeta MainiR. Padma and H. S. Sharatchandra, Entropy and Hadamard matrices, Journal of Physics A: Mathematical and General, 36 (2003), 109-112.  doi: 10.1088/0305-4470/36/7/103.  Google Scholar

[10]

J. Gallier, Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras, Chapter 14, in "Geometric Methods and Applications", the series Texts in Applied Mathematicsolume, 38 (2001), 367–414. doi: 10.1007/978-1-4613-0137-0_14.  Google Scholar

[11]

A. V. GeramitaJ. M. Geramita and J. Seberry, Orthogonal designs, Linear and Multilinear Algebra, 3 (1976), 381-206.  doi: 10.1080/03081087608817121.  Google Scholar

[12]

A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.  Google Scholar

[13]

B. K. P. Horn, Closed form solution of absolute orientation using unit quaternions, Journal of the Optical Society A, 4 (1987), 629-642.  doi: 10.1364/JOSAA.4.000629.  Google Scholar

[14]

Z. Q. Ma, Group Theory for Physicists, World Scientific, Singapore 2007. doi: 10.1142/6596.  Google Scholar

[15]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[16]

M. T. Mohan, On some p−almost Hadamard matrices, Accepted in Operators and Matrices, 2018. Google Scholar

[17]

H. Nakzato, Set of 3 × 3 orthostochastic matrices, Nihonkai Mathematics Journal, 7 (1996), 83-100.   Google Scholar

[18]

A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality constraints, Mathematical Programming, 109 (2007), 283-317.  doi: 10.1007/s10107-006-0033-0.  Google Scholar

[19]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd ed. Springer, New York, 2006  Google Scholar

[20]

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.  Google Scholar

[21]

D. R. Stinson Combinatorial Designs: Constructions and Analysis, Springer-Verlag New York, Inc., 2004.  Google Scholar

[22]

B. D. Sharma and D. P. Mittal, New non-additive measures of entropy for discrete probability distributions, Journal of Mathematical Sciences, 10 (1975), 28-40.   Google Scholar

[23]

F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD Thesis, https://arXiv.org/abs/1110.5590, 2011. Google Scholar

[24]

V. WeberJ. Vande VondeleJ. Hütter and A. M. Niklasson, Direct energy functional minimization under orthogonality constraints, The Journal of Chemical Physics, 128 (2008), 84-113.  doi: 10.1063/1.2841077.  Google Scholar

[25]

Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program., Ser. A, 142 (2013), 397-434.  doi: 10.1007/s10107-012-0584-1.  Google Scholar

[26]

K. ŻyczkowskiM. KuśW. Słomczyński and H.-J. Sommers, Random unistochastic matrices, Journal of Physics A: Mathematical and General, 36 (2003), 3425-3450.  doi: 10.1088/0305-4470/36/12/333.  Google Scholar

show all references

References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

K. T. Arasu, M. T. Mohan, A. Pathak and R. J. Ramya, Entropy optimal orthogonal matrices, Submitted for Journal Publication, 2018. Google Scholar

[3]

K. T. Arasu and M. T. Mohan, Entropy of orthogonal matrices and minimum distance orthostochastic matrices from the uniform van der Waerden matrix, Submitted for Journal Publication, 2018. Google Scholar

[4]

R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1997 doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[5]

O. Chterental and D. Ž. Ɖoković, On orthostochastic, unistochastic and qustochastic matrices, Linear Algebra and its Applications, 428 (2008), 1178-1201.  doi: 10.1016/j.laa.2007.09.022.  Google Scholar

[6]

N. Cressie and T. R. C. Read, Multinomial goodness of fit, Journal of the Royal Statistical Society, B, 46 (1984), 440-464.   Google Scholar

[7]

P. DelsarteJ. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal Ⅱ, Canadian Journal of Mathematics, ⅩⅩⅩⅢ (1971), 816-832.  doi: 10.4153/CJM-1971-091-x.  Google Scholar

[8]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal of Matrix Analysis and Applications, 20 (1999), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[9]

H. G. GadiyarK. M. Sangeeta MainiR. Padma and H. S. Sharatchandra, Entropy and Hadamard matrices, Journal of Physics A: Mathematical and General, 36 (2003), 109-112.  doi: 10.1088/0305-4470/36/7/103.  Google Scholar

[10]

J. Gallier, Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras, Chapter 14, in "Geometric Methods and Applications", the series Texts in Applied Mathematicsolume, 38 (2001), 367–414. doi: 10.1007/978-1-4613-0137-0_14.  Google Scholar

[11]

A. V. GeramitaJ. M. Geramita and J. Seberry, Orthogonal designs, Linear and Multilinear Algebra, 3 (1976), 381-206.  doi: 10.1080/03081087608817121.  Google Scholar

[12]

A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.  Google Scholar

[13]

B. K. P. Horn, Closed form solution of absolute orientation using unit quaternions, Journal of the Optical Society A, 4 (1987), 629-642.  doi: 10.1364/JOSAA.4.000629.  Google Scholar

[14]

Z. Q. Ma, Group Theory for Physicists, World Scientific, Singapore 2007. doi: 10.1142/6596.  Google Scholar

[15]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[16]

M. T. Mohan, On some p−almost Hadamard matrices, Accepted in Operators and Matrices, 2018. Google Scholar

[17]

H. Nakzato, Set of 3 × 3 orthostochastic matrices, Nihonkai Mathematics Journal, 7 (1996), 83-100.   Google Scholar

[18]

A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality constraints, Mathematical Programming, 109 (2007), 283-317.  doi: 10.1007/s10107-006-0033-0.  Google Scholar

[19]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd ed. Springer, New York, 2006  Google Scholar

[20]

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.  Google Scholar

[21]

D. R. Stinson Combinatorial Designs: Constructions and Analysis, Springer-Verlag New York, Inc., 2004.  Google Scholar

[22]

B. D. Sharma and D. P. Mittal, New non-additive measures of entropy for discrete probability distributions, Journal of Mathematical Sciences, 10 (1975), 28-40.   Google Scholar

[23]

F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, PhD Thesis, https://arXiv.org/abs/1110.5590, 2011. Google Scholar

[24]

V. WeberJ. Vande VondeleJ. Hütter and A. M. Niklasson, Direct energy functional minimization under orthogonality constraints, The Journal of Chemical Physics, 128 (2008), 84-113.  doi: 10.1063/1.2841077.  Google Scholar

[25]

Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program., Ser. A, 142 (2013), 397-434.  doi: 10.1007/s10107-012-0584-1.  Google Scholar

[26]

K. ŻyczkowskiM. KuśW. Słomczyński and H.-J. Sommers, Random unistochastic matrices, Journal of Physics A: Mathematical and General, 36 (2003), 3425-3450.  doi: 10.1088/0305-4470/36/12/333.  Google Scholar

Figure 1.  n versus d graph
Figure 2.  Rényi entropy of $2\times 2$ orthogonal matrices
Figure 3.  Sharma-Mittal entropy of $2\times 2$ orthogonal matrices
Figure 4.  Tsallis entropy of $2\times 2$ orthogonal matrices
Table 1.  1 $\leq n\leq $ 20.
$n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$ $n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$
$1$ ${\rm H}_1$ $0$ $11$ $\frac{1}{3}{\rm C}_{10}\oplus{\rm H}_1^*$ $1.054$
$2$ $\frac{1}{\sqrt{2}}{\rm H}_2$ $0$ $12$ $\frac{1}{2\sqrt{3}}{\rm H}_{12}$ $0$
$3$ ${\rm K}_3$ $0.471$ $13$ $\frac{1}{3}{\rm W}_{13, 9}$ $0.667$
$4$ $\frac{1}{2}{\rm H}_4$ $0$ $14$ $\frac{1}{\sqrt{13}}{\rm C}_{14}$ $0.277$
$5$ ${\rm K}_5$ $0.400$ $15$ ${\rm K}_3\otimes{\rm K}_5^{\dagger}$ $0.646$
$6$ $\frac{1}{\sqrt{5}}{\rm C}_6$ $0.447$ $16$ $\frac{1}{4}{\rm H}_{16}$ $0$
$7$ $\frac{1}{2}{\rm W}_{7, 4}$ $0.866$ $17$ $\frac{1}{3}{\rm W}_{17, 9}$ $0.943$
$8$ $\frac{1}{2\sqrt{2}}{\rm H}(8)$ $0$ $18$ $\frac{1}{\sqrt{17}}{\rm C}_{18}$ $0.243$
$9$ ${\rm K}_3\otimes{\rm K}_3$ $0.703$ $19$ $\frac{1}{\sqrt{17}}{\rm C}_{18}\oplus{\rm H}_1^*$ $1.029$
$10$ $\frac{1}{3}{\rm C}_{10}$ $0.333$ $20$ $\frac{1}{2\sqrt{5}}{\rm H}_{20}$ $0$
$^*$By Proposition 4.2, these orthogonal matrices are saddle points and not local minima. The weighing matrices ${\rm W}_{11, 4}$ and ${\rm W}_{19, 9}$ exists for orders $11$ and $19$, but they are also saddle points. The orthostochastic matrices corresponding to the orthogonal matrices $\frac{1}{2}{\rm W}_{11, 4}$ and $\frac{1}{3}{\rm W}_{19, 9}$ are at distances $1.323>1.054$ and $1.054>1.029$, respectively from the the uniform van der Waerden matrices ${\rm J}_{11}$ and ${\rm J}_{19}$. $^{\dagger}$For order $15$, weighing matrix ${\rm W}_{15, 9}$ exist, which are also local minima, by Proposition 4.11. But the orthostochastic matrix corresponding to the orthogonal matrix $\frac{1}{3}{\rm W}_{15, 9}$ is at a distance $0.817>0.646$, from the uniform van der Waerden matrix ${\rm J}_{15}$.
$n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$ $n$ Orthogonal matrix $d({\rm J}_n, {\rm B}_n)$
$1$ ${\rm H}_1$ $0$ $11$ $\frac{1}{3}{\rm C}_{10}\oplus{\rm H}_1^*$ $1.054$
$2$ $\frac{1}{\sqrt{2}}{\rm H}_2$ $0$ $12$ $\frac{1}{2\sqrt{3}}{\rm H}_{12}$ $0$
$3$ ${\rm K}_3$ $0.471$ $13$ $\frac{1}{3}{\rm W}_{13, 9}$ $0.667$
$4$ $\frac{1}{2}{\rm H}_4$ $0$ $14$ $\frac{1}{\sqrt{13}}{\rm C}_{14}$ $0.277$
$5$ ${\rm K}_5$ $0.400$ $15$ ${\rm K}_3\otimes{\rm K}_5^{\dagger}$ $0.646$
$6$ $\frac{1}{\sqrt{5}}{\rm C}_6$ $0.447$ $16$ $\frac{1}{4}{\rm H}_{16}$ $0$
$7$ $\frac{1}{2}{\rm W}_{7, 4}$ $0.866$ $17$ $\frac{1}{3}{\rm W}_{17, 9}$ $0.943$
$8$ $\frac{1}{2\sqrt{2}}{\rm H}(8)$ $0$ $18$ $\frac{1}{\sqrt{17}}{\rm C}_{18}$ $0.243$
$9$ ${\rm K}_3\otimes{\rm K}_3$ $0.703$ $19$ $\frac{1}{\sqrt{17}}{\rm C}_{18}\oplus{\rm H}_1^*$ $1.029$
$10$ $\frac{1}{3}{\rm C}_{10}$ $0.333$ $20$ $\frac{1}{2\sqrt{5}}{\rm H}_{20}$ $0$
$^*$By Proposition 4.2, these orthogonal matrices are saddle points and not local minima. The weighing matrices ${\rm W}_{11, 4}$ and ${\rm W}_{19, 9}$ exists for orders $11$ and $19$, but they are also saddle points. The orthostochastic matrices corresponding to the orthogonal matrices $\frac{1}{2}{\rm W}_{11, 4}$ and $\frac{1}{3}{\rm W}_{19, 9}$ are at distances $1.323>1.054$ and $1.054>1.029$, respectively from the the uniform van der Waerden matrices ${\rm J}_{11}$ and ${\rm J}_{19}$. $^{\dagger}$For order $15$, weighing matrix ${\rm W}_{15, 9}$ exist, which are also local minima, by Proposition 4.11. But the orthostochastic matrix corresponding to the orthogonal matrix $\frac{1}{3}{\rm W}_{15, 9}$ is at a distance $0.817>0.646$, from the uniform van der Waerden matrix ${\rm J}_{15}$.
[1]

Francis C. Motta, Patrick D. Shipman. Informing the structure of complex Hadamard matrix spaces using a flow. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2349-2364. doi: 10.3934/dcdss.2019147

[2]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[3]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[4]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[5]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[6]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[7]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[8]

El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883

[9]

Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial & Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036

[10]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[11]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[12]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[13]

A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347

[14]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[15]

Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks & Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63

[16]

Debasisha Mishra. Matrix group monotonicity using a dominance notion. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 267-274. doi: 10.3934/naco.2015.5.267

[17]

Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial & Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053

[18]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[19]

Boris Baeumer, Lipika Chatterjee, Peter Hinow, Thomas Rades, Ami Radunskaya, Ian Tucker. Predicting the drug release kinetics of matrix tablets. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 261-277. doi: 10.3934/dcdsb.2009.12.261

[20]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

 Impact Factor: 

Metrics

  • PDF downloads (196)
  • HTML views (271)
  • Cited by (0)

Other articles
by authors

[Back to Top]