December  2018, 8(4): 451-460. doi: 10.3934/naco.2018028

Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

Received  December 2017 Revised  August 2018 Published  September 2018

Fund Project: The work is supported by NSFC grant 11571056.

This paper studies the quantitative stability of stochastic mathematical programs with vertical complementarity constraints (SMPVCC) with respect to the perturbation of the underlying probability distribution. We first show under moderate conditions that the optimal solution set-mapping is outer semiconitnuous and optimal value function is Lipschitz continuous with respect to the probability distribution. We then move on to investigate the outer semiconitnuous of the M-stationary points by employing the reformulation of stationary points and some stability results on the stochastic generalized equations. The particular focus is given to discrete approximation of probability distributions, where both cases that the sample is chosen in a fixed procedure and random procedure are considered. The technical results lay a theoretical foundation for approximation schemes to be applied to solve SMPVCC.

Citation: Yongchao Liu. Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 451-460. doi: 10.3934/naco.2018028
References:
[1]

S. I. BirbilG. Gürkan and O. Listes, Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res., 31 (2006), 739-760.  doi: 10.1287/moor.1060.0215.  Google Scholar

[2]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, V. Ⅰ-Ⅱ, Springer, 2003.  Google Scholar

[3]

A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, Inter. stat. Rev., 70 (2002), 419-435.   Google Scholar

[4]

H. Gfrerer and J. J. Ye, New constraint qualifications for mathematical programs with equilibrium constraints via variational analysis, SIAM J. Optim., 27 (2017), 842-865.  doi: 10.1137/16M1088752.  Google Scholar

[5]

Y. C. Liang and G. H. Lin, Stationarity conditions and their reformulations for mathematical programs with vertical complementarity constraints, J. Optim.Theorey Appl., 154 (2012), 54-70.  doi: 10.1007/s10957-012-9992-x.  Google Scholar

[6]

Y. LiuH. Xu and G. H. Lin, Stability analysis of two stage stochastic mathematical programs with complementarity constraints via NLP-regularization, SIAM J. Optim., 21 (2011), 609-705.  doi: 10.1137/100785685.  Google Scholar

[7]

Y. LiuH. Xu and G. H. Lin, Stability analysis of one stage stochastic mathematical programs with complementarity constraints, J. Optim. Theory Appl., 152 (2012), 573-555.  doi: 10.1007/s10957-011-9903-6.  Google Scholar

[8]

Y. LiuH. Xu and J. J. Ye, Penalized sample average approximation methods for stochastic mathematical programs with complementarity constraints, Math. Oper. Res., 36 (2011), 670-694.  doi: 10.1287/moor.1110.0513.  Google Scholar

[9]

Y. LiuW. Römisch and H. Xu, Quantitative stability analysis of stochastic generalized equations, SIAM J. Optim., 24 (2014), 467-497.  doi: 10.1137/120880434.  Google Scholar

[10]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, United Kingdom, 1996. doi: 10.1017/CBO9780511983658.  Google Scholar

[11]

J. V. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer Academic Publishers, Boston, 1998. doi: 10.1007/978-1-4757-2825-5.  Google Scholar

[12]

J. S. Pang, Error bound in mathematical programming, Math. Prog., 79 (1997), 299-332.  doi: 10.1007/BF02614322.  Google Scholar

[13]

M. Patriksson and L. Wynter, Stochastic mathematical programs with equilibrium constraints, Oper. Res. Lett., 25 (1999), 159-167.  doi: 10.1016/S0167-6377(99)00052-8.  Google Scholar

[14]

G. Ch. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer Series in Operations Research and Financial Engineering, Springer, 2014. doi: 10.1007/978-3-319-08843-3.  Google Scholar

[15]

S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, John Wiley and Sons, West Sussex, England, 1991.  Google Scholar

[16]

W. Römisch, Stability of stochastic programming problems, in Stochastic Programming, Handbooks in Operations Research and Management Science, 10, (eds. A. Ruszczynski and A. Shapiro), Elsevier, (2003), 483-554.  Google Scholar

[17]

H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensivity, Math. Oper. Res., 25 (2000), 1-22.  doi: 10.1287/moor.25.1.1.15213.  Google Scholar

[18]

A. Shapiro, Stochastic mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 128 (2006), 223-243.  doi: 10.1007/s10957-005-7566-x.  Google Scholar

[19]

A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation, Optimization, 57 (2008), 395-418.  doi: 10.1080/02331930801954177.  Google Scholar

[20]

H. Xu, Y. Liu, and H. Sun, Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane method, Math. Prog. , to appear. doi: 10.1007/s10107-017-1143-6.  Google Scholar

[21]

J. J. Ye, Necessary and sufficient conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307 (2005), 350-369.  doi: 10.1016/j.jmaa.2004.10.032.  Google Scholar

[22]

J. J. Ye and X. Y. Ye, Necessary optimality conditions for optimization problems with variational inequality constraints, Math. Oper. Res., 22 (1997), 977-997.  doi: 10.1287/moor.22.4.977.  Google Scholar

show all references

References:
[1]

S. I. BirbilG. Gürkan and O. Listes, Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res., 31 (2006), 739-760.  doi: 10.1287/moor.1060.0215.  Google Scholar

[2]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, V. Ⅰ-Ⅱ, Springer, 2003.  Google Scholar

[3]

A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, Inter. stat. Rev., 70 (2002), 419-435.   Google Scholar

[4]

H. Gfrerer and J. J. Ye, New constraint qualifications for mathematical programs with equilibrium constraints via variational analysis, SIAM J. Optim., 27 (2017), 842-865.  doi: 10.1137/16M1088752.  Google Scholar

[5]

Y. C. Liang and G. H. Lin, Stationarity conditions and their reformulations for mathematical programs with vertical complementarity constraints, J. Optim.Theorey Appl., 154 (2012), 54-70.  doi: 10.1007/s10957-012-9992-x.  Google Scholar

[6]

Y. LiuH. Xu and G. H. Lin, Stability analysis of two stage stochastic mathematical programs with complementarity constraints via NLP-regularization, SIAM J. Optim., 21 (2011), 609-705.  doi: 10.1137/100785685.  Google Scholar

[7]

Y. LiuH. Xu and G. H. Lin, Stability analysis of one stage stochastic mathematical programs with complementarity constraints, J. Optim. Theory Appl., 152 (2012), 573-555.  doi: 10.1007/s10957-011-9903-6.  Google Scholar

[8]

Y. LiuH. Xu and J. J. Ye, Penalized sample average approximation methods for stochastic mathematical programs with complementarity constraints, Math. Oper. Res., 36 (2011), 670-694.  doi: 10.1287/moor.1110.0513.  Google Scholar

[9]

Y. LiuW. Römisch and H. Xu, Quantitative stability analysis of stochastic generalized equations, SIAM J. Optim., 24 (2014), 467-497.  doi: 10.1137/120880434.  Google Scholar

[10]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, United Kingdom, 1996. doi: 10.1017/CBO9780511983658.  Google Scholar

[11]

J. V. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer Academic Publishers, Boston, 1998. doi: 10.1007/978-1-4757-2825-5.  Google Scholar

[12]

J. S. Pang, Error bound in mathematical programming, Math. Prog., 79 (1997), 299-332.  doi: 10.1007/BF02614322.  Google Scholar

[13]

M. Patriksson and L. Wynter, Stochastic mathematical programs with equilibrium constraints, Oper. Res. Lett., 25 (1999), 159-167.  doi: 10.1016/S0167-6377(99)00052-8.  Google Scholar

[14]

G. Ch. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer Series in Operations Research and Financial Engineering, Springer, 2014. doi: 10.1007/978-3-319-08843-3.  Google Scholar

[15]

S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, John Wiley and Sons, West Sussex, England, 1991.  Google Scholar

[16]

W. Römisch, Stability of stochastic programming problems, in Stochastic Programming, Handbooks in Operations Research and Management Science, 10, (eds. A. Ruszczynski and A. Shapiro), Elsevier, (2003), 483-554.  Google Scholar

[17]

H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensivity, Math. Oper. Res., 25 (2000), 1-22.  doi: 10.1287/moor.25.1.1.15213.  Google Scholar

[18]

A. Shapiro, Stochastic mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 128 (2006), 223-243.  doi: 10.1007/s10957-005-7566-x.  Google Scholar

[19]

A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation, Optimization, 57 (2008), 395-418.  doi: 10.1080/02331930801954177.  Google Scholar

[20]

H. Xu, Y. Liu, and H. Sun, Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane method, Math. Prog. , to appear. doi: 10.1007/s10107-017-1143-6.  Google Scholar

[21]

J. J. Ye, Necessary and sufficient conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307 (2005), 350-369.  doi: 10.1016/j.jmaa.2004.10.032.  Google Scholar

[22]

J. J. Ye and X. Y. Ye, Necessary optimality conditions for optimization problems with variational inequality constraints, Math. Oper. Res., 22 (1997), 977-997.  doi: 10.1287/moor.22.4.977.  Google Scholar

[1]

. Publisher Correction to: Probability, uncertainty and quantitative risk, volume 4. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 7-. doi: 10.1186/s41546-019-0041-7

[2]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[3]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[4]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[5]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[6]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[7]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[8]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[9]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[10]

Stefano Galatolo, Alfonso Sorrentino. Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021138

[11]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[12]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[13]

Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021168

[14]

Christopher E. Elmer. The stability of stationary fronts for a discrete nerve axon model. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113-129. doi: 10.3934/mbe.2007.4.113

[15]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[16]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[17]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[18]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[19]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[20]

Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1309-1360. doi: 10.3934/dcds.2020079

 Impact Factor: 

Metrics

  • PDF downloads (186)
  • HTML views (459)
  • Cited by (0)

Other articles
by authors

[Back to Top]