December  2018, 8(4): 461-479. doi: 10.3934/naco.2018029

Weighted vertices optimizer (WVO): A novel metaheuristic optimization algorithm

Department of electrical and computer engineering, University of Tabriz, Tabriz, Iran

Received  August 2017 Revised  March 2018 Published  September 2018

This paper introduces a novel optimization algorithm that is based on the basic idea underlying the bisection root-finding method in mathematics. The bisection method is modified for use as an optimizer by weighting each agent or vertex, and the algorithm developed from this process is called the weighted vertices optimizer (WVO). For exploitation and exploration, both swarm intelligence and evolution strategy are used to improve the accuracy and speed of WVO, which is then compared with six other popular optimization algorithms. Results confirm the superiority of WVO in most of the test functions.

Citation: Soheil Dolatabadi. Weighted vertices optimizer (WVO): A novel metaheuristic optimization algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 461-479. doi: 10.3934/naco.2018029
References:
[1]

M. Z. AliN. H. AwadP. N. Suganthan and R. G. Reynolds, A modified cultural algorithm with a balanced performance for the differential evolution frameworks, Knowledge-Based Systems, 111 (2016), 73-86.  doi: 10.1016/j.knosys.2016.08.005.  Google Scholar

[2]

E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition, IEEE Congress on Evolutionary Computation, Singapore, 2007. doi: 10.1109/CEC.2007.4425083.  Google Scholar

[3]

R. L. Burden and J. D. Faires, Numerical Analysis, 3rd edition, Prindle, Weber and Schmidt, 1985. Google Scholar

[4]

M. DorigoV. Maniezzo and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26 (1996), 29-41.  doi: 10.1109/3477.484436.  Google Scholar

[5]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995. doi: 10.1109/MHS.1995.494215.  Google Scholar

[6]

L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley and Sons, 1966. doi: 10.1109/9780470544600.ch7.  Google Scholar

[7]

D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learning, Machine Learning, 3 (1988), 95-99.   Google Scholar

[8]

Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion, 19 (2004), 384-391.  doi: 10.1109/TEC.2003.821821.  Google Scholar

[9]

Z. W. GeemJ. H. Kim and G. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76 (2001), 60-68.   Google Scholar

[10]

D. Karaboga and B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, International Fuzzy Systems Association World Congress, 2007. doi: 10.1007/s10898-007-9149-x.  Google Scholar

[11]

E.-H. Kenane, F. Djahli and C. Dumond, A novel Modified Invasive Weeds Optimization for linear array antennas nulls control, 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 2015. doi: 10.1109/INTEE.2015.7416784.  Google Scholar

[12]

J. Liang, P. Suganthan and K. Deb, Novel composition test functions for numerical global optimization, Swarm Intelligence Symposium, Pasadena, CA, USA, 2005. doi: 10.1109/SIS.2005.1501604.  Google Scholar

[13]

A. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1 (2006), 355-366.  doi: 10.1016/B978-0-12-416743-8.00001-4.  Google Scholar

[14]

R. G. Reynolds, An Introduction to Cultural Algorithms, 3rd Annual Conference on Evolutionary Programming, 1994. Google Scholar

[15]

W. XiangM. AnY. LiR. He and J. Zhang, An improved global-best harmony search algorithm for faster optimization, Expert Systems with Applications, 41 (2014), 788-803.  doi: 10.1016/j.eswa.2014.03.016.  Google Scholar

[16]

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms: Second Edition, Luniver press, 2010. Google Scholar

[17]

A. E. M. Zavala, A. H. Aguirre and E. R. V. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (PESO), 7th annual conference on Genetic and evolutionary computation, Washington DC, USA, 2005. Google Scholar

show all references

References:
[1]

M. Z. AliN. H. AwadP. N. Suganthan and R. G. Reynolds, A modified cultural algorithm with a balanced performance for the differential evolution frameworks, Knowledge-Based Systems, 111 (2016), 73-86.  doi: 10.1016/j.knosys.2016.08.005.  Google Scholar

[2]

E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition, IEEE Congress on Evolutionary Computation, Singapore, 2007. doi: 10.1109/CEC.2007.4425083.  Google Scholar

[3]

R. L. Burden and J. D. Faires, Numerical Analysis, 3rd edition, Prindle, Weber and Schmidt, 1985. Google Scholar

[4]

M. DorigoV. Maniezzo and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26 (1996), 29-41.  doi: 10.1109/3477.484436.  Google Scholar

[5]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995. doi: 10.1109/MHS.1995.494215.  Google Scholar

[6]

L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley and Sons, 1966. doi: 10.1109/9780470544600.ch7.  Google Scholar

[7]

D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learning, Machine Learning, 3 (1988), 95-99.   Google Scholar

[8]

Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion, 19 (2004), 384-391.  doi: 10.1109/TEC.2003.821821.  Google Scholar

[9]

Z. W. GeemJ. H. Kim and G. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76 (2001), 60-68.   Google Scholar

[10]

D. Karaboga and B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, International Fuzzy Systems Association World Congress, 2007. doi: 10.1007/s10898-007-9149-x.  Google Scholar

[11]

E.-H. Kenane, F. Djahli and C. Dumond, A novel Modified Invasive Weeds Optimization for linear array antennas nulls control, 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 2015. doi: 10.1109/INTEE.2015.7416784.  Google Scholar

[12]

J. Liang, P. Suganthan and K. Deb, Novel composition test functions for numerical global optimization, Swarm Intelligence Symposium, Pasadena, CA, USA, 2005. doi: 10.1109/SIS.2005.1501604.  Google Scholar

[13]

A. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1 (2006), 355-366.  doi: 10.1016/B978-0-12-416743-8.00001-4.  Google Scholar

[14]

R. G. Reynolds, An Introduction to Cultural Algorithms, 3rd Annual Conference on Evolutionary Programming, 1994. Google Scholar

[15]

W. XiangM. AnY. LiR. He and J. Zhang, An improved global-best harmony search algorithm for faster optimization, Expert Systems with Applications, 41 (2014), 788-803.  doi: 10.1016/j.eswa.2014.03.016.  Google Scholar

[16]

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms: Second Edition, Luniver press, 2010. Google Scholar

[17]

A. E. M. Zavala, A. H. Aguirre and E. R. V. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (PESO), 7th annual conference on Genetic and evolutionary computation, Washington DC, USA, 2005. Google Scholar

Figure 1.  a) the bisection method b) the raw concept of WVO algorithm using two vertices
Figure 2.  the graphical description of proposed method for five vertices mode
Figure 3.  the flowchart of WVO algorithm
Figure 4.  2D plot of test functions
Figure 5.  3D sketch of Shurb's function (F1)
Figure 6.  the positions of WVO vertices in first iteration
Figure 7.  A) the positions of vertices in second iteration B)the positions of vertices in 5th iteration C)the positions of vertices in 9th iteration D)the positions of vertices in 13th iteration
Figure 8.  the cost value versus iteration
Figure 9.  cost value of F2 function in each iteration
Figure 10.  cost value of F3 function in each iteration
Figure 11.  cost value of F4 function in each iteration
Figure 12.  cost value of F5 function in each iteration
Figure 13.  cost value of F6 function in each iteration
Figure 14.  block diagram of AVR along with PID controller [17]
Figure 15.  cost value of each method for AVR's PID
Figure 16.  the step response of without PID controller and with optimized gains
Figure 17.  the logarithmic plot of cost function versus iteration for F5 function and different N${}_{V}$
Figure 18.  the logarithmic plot of cost function versus iteration for F6 function and different N${}_{V}$
Table 1.  parameters of WVO
C${}_{F}$ C${}_{B}$ C${}_{G}$ N${}_{V}$ V${}_{Speed}$ W${}_{GB}$ W${}_{GW}$
0.6 0.3 0.085 2 0.6 10 1
C${}_{F}$ C${}_{B}$ C${}_{G}$ N${}_{V}$ V${}_{Speed}$ W${}_{GB}$ W${}_{GW}$
0.6 0.3 0.085 2 0.6 10 1
Table 2.  benchmark optimization functions
ID Name Function Bound Global Min
F1 Shubert $(\sum^5_{i=1}{icos(\left(i+1\right)x_1+1)})$
$(\sum^5_{i=1}{icos(\left(i+1\right)x_2+1)})$
${\left[\text{-2.12.2.12}\right]}^{\text{2}}$ -186.7309
F2 Six-hump camel back $\left(4-2.1x^2_1+\frac{x^4_1}{3}\right)x^2_1 $$+x_1x_2+(-4+4x^2_2)x^2_2$ ${\left[\text{-5.5}\right]}^{\text{2}}$ -1.0316285
F3 Sphere $\sqrt{\sum^D_{i=1}{x^2_i}}$ ${\left[\text{-32.32}\right]}^{\text{10}}$ 0
F4 Ackley $-A\times exp\left(-0.02\sqrt{\frac{\sum^D_{i=1}{x^2_i}}{D}}\right)$ $-{\text{exp} \left(\frac{\sum^D_{i=1}{{\text{cos} \left(2\pi x_i\right)\ }}}{D}\right)\ }+A\ ;A=20$ ${\left[\text{-100.100}\right]}^{\text{10}}$ 0
F5 Griewank $1+\frac{1}{4000}\sum^D_{i=1}{x^2_i-\prod^D_{i=1}{\text{cos}\text{}(\frac{x_i}{\sqrt{i}})}}$ ${\left[\text{-600.600}\right]}^{\text{10}}$ 0
F6 Rastrigin $10D+\sum^D_{i=1}{(x^2_i-10\text{cos}\text{}(2\pi x_i))}$ ${\left[\text{-5.12.5.12}\right]}^{\text{10}}$ 0
ID Name Function Bound Global Min
F1 Shubert $(\sum^5_{i=1}{icos(\left(i+1\right)x_1+1)})$
$(\sum^5_{i=1}{icos(\left(i+1\right)x_2+1)})$
${\left[\text{-2.12.2.12}\right]}^{\text{2}}$ -186.7309
F2 Six-hump camel back $\left(4-2.1x^2_1+\frac{x^4_1}{3}\right)x^2_1 $$+x_1x_2+(-4+4x^2_2)x^2_2$ ${\left[\text{-5.5}\right]}^{\text{2}}$ -1.0316285
F3 Sphere $\sqrt{\sum^D_{i=1}{x^2_i}}$ ${\left[\text{-32.32}\right]}^{\text{10}}$ 0
F4 Ackley $-A\times exp\left(-0.02\sqrt{\frac{\sum^D_{i=1}{x^2_i}}{D}}\right)$ $-{\text{exp} \left(\frac{\sum^D_{i=1}{{\text{cos} \left(2\pi x_i\right)\ }}}{D}\right)\ }+A\ ;A=20$ ${\left[\text{-100.100}\right]}^{\text{10}}$ 0
F5 Griewank $1+\frac{1}{4000}\sum^D_{i=1}{x^2_i-\prod^D_{i=1}{\text{cos}\text{}(\frac{x_i}{\sqrt{i}})}}$ ${\left[\text{-600.600}\right]}^{\text{10}}$ 0
F6 Rastrigin $10D+\sum^D_{i=1}{(x^2_i-10\text{cos}\text{}(2\pi x_i))}$ ${\left[\text{-5.12.5.12}\right]}^{\text{10}}$ 0
Table 3.  cost value of each optimization algorithm in 78th iteration
Method Cost value
WVO 1.78 E-15
PSO 7.36 E-4
GA 9.17 E-5
IWO 2.157
HS 2.56E-3
CA 5.93E-6
mIWO 1.23 E-5
mHS 8.69 E-9
mCA 5.12 E-10
Method Cost value
WVO 1.78 E-15
PSO 7.36 E-4
GA 9.17 E-5
IWO 2.157
HS 2.56E-3
CA 5.93E-6
mIWO 1.23 E-5
mHS 8.69 E-9
mCA 5.12 E-10
Table 4.  the performance of each optimization method
WVO PSO GA IWO HS CA mIWO mHS mCA
F1 N1 13 45 27 184 88 47 132 44 23
B2 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309
R3 1 5 3 9 7 6 8 4 2
F2 N 19 50 24 54 60 24 39 45 20
B -1.03163 -1.03163 -1.03163 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162
R 1 7 3 8 9 3 5 6 2
F3 N 77 1158 1500 1498 1501 1500 1382 1500 1500
B 1.71 E-58 0 7.64 E-128 2.43 E-6 2 E-10 1.89 E-143 1.13 E-12 3.12E-8 0
R 5 1 4 9 7 3 6 8 2
F4 N 67 233 199 198 1501 1336 173 1500 1363
B 8.88 E-16 4.44 E-15 20 20 6.2 E-5 20.29 6.13 E-3 2.52 E-8 1.23 E-4
R 1 2 7 8 4 9 6 3 5
F5 N 41 116 251 744 1501 468 632 432 321
B 0 0.09747 0 0.90271 1.52 E-8 20.25 2.38 E-3 1.58 E-32 9.78 E-2
R 1 7 2 8 4 9 5 3 6
F6 N 30 119 418 200 1501 1130 123 1245 1351
B 0 5.9697 0 8.9552 4.06 E-10 22.94947 3.25 E-9 3.15 E-21 4.65 E-3
R 1 7 2 8 4 9 5 3 6
$\boldsymbol{\mathit{\boldsymbol{\sum}}}$ R 1 5 2 9 6 8 6 4 3
   1N:Number of iteration - 2B:Best cost value - 3R:Rank
WVO PSO GA IWO HS CA mIWO mHS mCA
F1 N1 13 45 27 184 88 47 132 44 23
B2 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309 -176.7309
R3 1 5 3 9 7 6 8 4 2
F2 N 19 50 24 54 60 24 39 45 20
B -1.03163 -1.03163 -1.03163 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162
R 1 7 3 8 9 3 5 6 2
F3 N 77 1158 1500 1498 1501 1500 1382 1500 1500
B 1.71 E-58 0 7.64 E-128 2.43 E-6 2 E-10 1.89 E-143 1.13 E-12 3.12E-8 0
R 5 1 4 9 7 3 6 8 2
F4 N 67 233 199 198 1501 1336 173 1500 1363
B 8.88 E-16 4.44 E-15 20 20 6.2 E-5 20.29 6.13 E-3 2.52 E-8 1.23 E-4
R 1 2 7 8 4 9 6 3 5
F5 N 41 116 251 744 1501 468 632 432 321
B 0 0.09747 0 0.90271 1.52 E-8 20.25 2.38 E-3 1.58 E-32 9.78 E-2
R 1 7 2 8 4 9 5 3 6
F6 N 30 119 418 200 1501 1130 123 1245 1351
B 0 5.9697 0 8.9552 4.06 E-10 22.94947 3.25 E-9 3.15 E-21 4.65 E-3
R 1 7 2 8 4 9 5 3 6
$\boldsymbol{\mathit{\boldsymbol{\sum}}}$ R 1 5 2 9 6 8 6 4 3
   1N:Number of iteration - 2B:Best cost value - 3R:Rank
Table 5.  the understudy composition functions [12]
CF1 CF2 CF3
$f_1, f_2, \dots , f_{10}=F5$ $f_{1-2}\left(x\right)=F4$
$f_{3-4}\left(x\right)=F6$
$f_{5-6}\left(x\right)=F7$
$f_{7-8}\left(x\right)=F5$
$f_{9-10}\left(x\right)=F3$
$f_{1-2}\left(x\right)=F6$
$f_{3-4}\left(x\right)=F7$
$f_{5-6}\left(x\right)=F5$
$f_{7-8}\left(x\right)=F4$
$f_{9-10}\left(x\right)=F3$
CF1 CF2 CF3
$f_1, f_2, \dots , f_{10}=F5$ $f_{1-2}\left(x\right)=F4$
$f_{3-4}\left(x\right)=F6$
$f_{5-6}\left(x\right)=F7$
$f_{7-8}\left(x\right)=F5$
$f_{9-10}\left(x\right)=F3$
$f_{1-2}\left(x\right)=F6$
$f_{3-4}\left(x\right)=F7$
$f_{5-6}\left(x\right)=F5$
$f_{7-8}\left(x\right)=F4$
$f_{9-10}\left(x\right)=F3$
Table 6.  results of optimization algorithms for three CFs
PSO [12] DE [12] GA WVO
CF1 Mean 1.7203 E2 1.4441 E2 1.3451 E2 1.1121 E2
Std. deviation 3.2869 E1 1.9401 E1 1.9142 E1 1.4232 E1
CF2 Mean 3.1430 E2 3.2486 E2 3.2314 E2 3.0021 E2
Std. deviation 2.0006 E1 1.4784 E1 1.8154 E1 1.6823 E1
CF3 Mean 8.3450 E1 1.0789 E1 7.5421 E1 3.8124 E1
Std. deviation 1.0111 E2 2.6040 E0 1.0512 E1 8.5412 E1
PSO [12] DE [12] GA WVO
CF1 Mean 1.7203 E2 1.4441 E2 1.3451 E2 1.1121 E2
Std. deviation 3.2869 E1 1.9401 E1 1.9142 E1 1.4232 E1
CF2 Mean 3.1430 E2 3.2486 E2 3.2314 E2 3.0021 E2
Std. deviation 2.0006 E1 1.4784 E1 1.8154 E1 1.6823 E1
CF3 Mean 8.3450 E1 1.0789 E1 7.5421 E1 3.8124 E1
Std. deviation 1.0111 E2 2.6040 E0 1.0512 E1 8.5412 E1
Table 7.  value of AVR's parameters [17]
Parameter value
K${}_{A}$ 10
${\tau _A}$ 0.1
K${}_{E}$ 1
${\tau _E}$ 0.4
K${}_{G}$ 1
${\tau _G}$ 1
K${}_{R}$ 1
${\tau _R}$ 0.01
Parameter value
K${}_{A}$ 10
${\tau _A}$ 0.1
K${}_{E}$ 1
${\tau _E}$ 0.4
K${}_{G}$ 1
${\tau _G}$ 1
K${}_{R}$ 1
${\tau _R}$ 0.01
Table 8.  obtained values and the result for each optimization method
KP KI KD RT ST
(sec)
OS
(%)
Final
error
(%)
Cost value
WVO 0.600518 0.41376 0.20136 0.3101 0.5013 0.0003 0 3.11706
PSO 0.600532 0.41386 0.20137 0.3141 0.5013 0.0017 0 3.11752
GA 0.610065 0.42965 0.20784 0.3226 0.5005 0.1522 0.018 3.17785
KP KI KD RT ST
(sec)
OS
(%)
Final
error
(%)
Cost value
WVO 0.600518 0.41376 0.20136 0.3101 0.5013 0.0003 0 3.11706
PSO 0.600532 0.41386 0.20137 0.3141 0.5013 0.0017 0 3.11752
GA 0.610065 0.42965 0.20784 0.3226 0.5005 0.1522 0.018 3.17785
Table 9.  effect of C${}_{F}$, C${}_{B}$, C${}_{G}$, W${}_{GB}$ and W${}_{GW}$ on performance of WVO
Function C${}_{F}$ The best cost Iteration C${}_{B}$ The best cost Iteration C${}_{G}$ The best cost Iteration W${}_{GB}$ The best cost Iteration W${}_{GW}$ The best cost Iteration
F5 0.2 3.12E-12 46 0.2 0 43 0.02 0 73 2 0 47 2 0 41
0.4 2.02E-19 42 0.4 0 41 0.04 0 45 5 0 43 5 0 45
0.6 0 42 0.6 0 42 0.06 0 45 10 0 42 10 0 47
0.8 0 42 0.8 2.31E-26 43 0.08 0 41 15 0 42 15 0 47
1 3.12E-30 44 1 8.64E-23 45 0.1 0 53 20 0 43 20 0 48
F6 0.2 2.31E-6 45 0.2 0 41 0.02 2.31E-26 45 2 0 45 2 0 43
0.4 0 42 0.4 0 42 0.04 0 43 5 0 43 5 0 43
0.6 0 42 0.6 1.12E-28 45 0.06 0 43 10 0 43 10 0 43
0.8 0 45 0.8 6.78E-25 49 0.08 0 41 15 0 44 15 0 45
1 0 45 1 1.32E-24 51 0.1 0 44 20 0 44 20 0 48
Function C${}_{F}$ The best cost Iteration C${}_{B}$ The best cost Iteration C${}_{G}$ The best cost Iteration W${}_{GB}$ The best cost Iteration W${}_{GW}$ The best cost Iteration
F5 0.2 3.12E-12 46 0.2 0 43 0.02 0 73 2 0 47 2 0 41
0.4 2.02E-19 42 0.4 0 41 0.04 0 45 5 0 43 5 0 45
0.6 0 42 0.6 0 42 0.06 0 45 10 0 42 10 0 47
0.8 0 42 0.8 2.31E-26 43 0.08 0 41 15 0 42 15 0 47
1 3.12E-30 44 1 8.64E-23 45 0.1 0 53 20 0 43 20 0 48
F6 0.2 2.31E-6 45 0.2 0 41 0.02 2.31E-26 45 2 0 45 2 0 43
0.4 0 42 0.4 0 42 0.04 0 43 5 0 43 5 0 43
0.6 0 42 0.6 1.12E-28 45 0.06 0 43 10 0 43 10 0 43
0.8 0 45 0.8 6.78E-25 49 0.08 0 41 15 0 44 15 0 45
1 0 45 1 1.32E-24 51 0.1 0 44 20 0 44 20 0 48
Table 10.  the effect of N${}_{V}$ value on speed of algorithm
Function N${}_{V}$ The best cost Iteration
F5 2 0 47
3 0 43
4 0 42
5 0 41
10 0 43
15 4.55E-8 116
F5 2 0 45
3 0 43
4 0 43
5 0 44
10 0 44
15 0.406497 116
Function N${}_{V}$ The best cost Iteration
F5 2 0 47
3 0 43
4 0 42
5 0 41
10 0 43
15 4.55E-8 116
F5 2 0 45
3 0 43
4 0 43
5 0 44
10 0 44
15 0.406497 116
[1]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[2]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[7]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[8]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[9]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[10]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[11]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[12]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[17]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[18]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[19]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[20]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

 Impact Factor: 

Metrics

  • PDF downloads (171)
  • HTML views (461)
  • Cited by (1)

Other articles
by authors

[Back to Top]