December  2018, 8(4): 493-503. doi: 10.3934/naco.2018031

Further results on the perturbation estimations for the Drazin inverse

School of Mathematical Science, Harbin Normal University, Harbin 150025, China

* Corresponding author: H. Ma

Received  February 2018 Revised  March 2018 Published  September 2018

Fund Project: H. Ma is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232)
X. Gao is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232).

For
$n× n$
complex singular matrix
$A$
with ind
$(A) = k>1$
, let
$A^D$
be the Drazin inverse of
$A$
. If a matrix
$B = A+E$
with ind
$(B) = 1$
is said to be an acute perturbation of
$A$
, if
$\|E\|$
is small and the spectral radius of
$B_gB- A^DA$
satisfies
$ρ(B_gB- A^DA) < 1,$
where
$B_g$
is the group inverse of
$B$
.
The acute perturbation coincides with the stable perturbation of the group inverse, if the matrix
$B$
satisfies geometrical condition:
${\mathcal R}(B) \cap {\mathcal N}(A^k) = \{ {\bf 0} \}, {\mathcal N}(B)\cap {\mathcal R}(A^k) = \{ {\bf 0} \}$
which introduced by Vélez-Cerrada, Robles, and Castro-González, (Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161).
Furthermore, two examples are provided to illustrate the acute perturbation of the Drazin inverse. We prove the correctness of the conjecture in a special case of ind
$(B) = 1$
by Wei (Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157).
Citation: Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.  Google Scholar

[2]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[3]

S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudoinverses, Linear Algebra Appl., 10 (1975), 77-83.   Google Scholar

[4]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979; SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[5]

N. Castro-GonzálezJ. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM. J. Matrix Anal. Appl., 30 (2008), 882-897.  doi: 10.1137/060653366.  Google Scholar

[6]

N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1213-1223.  doi: 10.1016/j.jmaa.2007.10.066.  Google Scholar

[7]

N. Castro-GonzálezM. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, Electron. J. Linear Algebra, 22 (2011), 539-556.  doi: 10.13001/1081-3810.1456.  Google Scholar

[8]

D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6349-7.  Google Scholar

[9]

M. EiermanI. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math., 53 (1988), 265-283.  doi: 10.1007/BF01404464.  Google Scholar

[10]

A. Galántai, Projectors and Projection Methods, Springer, New York, 2004. Google Scholar

[11]

R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013.  Google Scholar

[12]

J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413.  doi: 10.1016/j.camwa.2018.02.006.  Google Scholar

[13]

S. Kirkland and M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, 2012.  Google Scholar

[14]

J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, Appl. Math. Comput., 126 (2002), 181-185.  doi: 10.1016/S0096-3003(00)00149-1.  Google Scholar

[15]

X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, Linear Algebra Appl., 338 (2001), 53-66.  doi: 10.1016/S0024-3795(01)00369-X.  Google Scholar

[16]

X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, Appl. Math. Comput., 140 (2003), 329-340.  doi: 10.1016/S0096-3003(02)00230-8.  Google Scholar

[17]

H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, Int. J. Comput. Math., 95 (2018), 710-720.  doi: 10.1080/00207160.2017.1294689.  Google Scholar

[18]

C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review, 17 (1975), 443-464.  doi: 10.1137/1017044.  Google Scholar

[19]

G. Rong, The error bound of the perturbation of the Drazin inverse, Linear Algebra Appl., 47 (1982), 159-168.  doi: 10.1016/0024-3795(82)90233-6.  Google Scholar

[20]

A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, Numer. Math., 93 (2003), 563-581.  doi: 10.1007/s002110100379.  Google Scholar

[21]

G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, SIAM Review, 19 (1977), 634-662.  doi: 10.1137/1019104.  Google Scholar

[22]

G. W. Stewart, On the numerical analysis of oblique projectors, SIAM J. Matrix Anal. Appl., 32 (2011), 309-348.  doi: 10.1137/100792093.  Google Scholar

[23]

D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, Numer. Linear Algebra Appl., 1 (1994), 151-154.  doi: 10.1002/nla.1680010206.  Google Scholar

[24]

D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), 309-323.  doi: 10.1007/s11075-006-9046-2.  Google Scholar

[25]

J. Y. Vélez-CerradaJ. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161.  doi: 10.1016/j.amc.2009.08.003.  Google Scholar

[26]

P. Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232.   Google Scholar

[27]

Y. Wei, Expressions for the Drazin inverse of a 2 × 2 block matrix, Linear Multilinear Algebra, 45 (1998), 131-146.  doi: 10.1080/03081089808818583.  Google Scholar

[28]

Y. Wei, On the perturbation of the group inverse and oblique projection, Appl. Math. Comput., 98 (1999), 29-42.  doi: 10.1016/S0096-3003(97)10151-5.  Google Scholar

[29]

Y. Wei, Perturbation bound of the Drazin inverse, Appl. Math. Comput., 125 (2002), 231-244.  doi: 10.1016/S0096-3003(00)00126-0.  Google Scholar

[30]

Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.  Google Scholar

[31]

Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157.  doi: 10.1016/j.laa.2017.08.009.  Google Scholar

[32]

Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575.  doi: 10.1002/nla.336.  Google Scholar

[33]

Y. WeiX. LiF. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765-771.  doi: 10.1016/j.laa.2006.06.015.  Google Scholar

[34]

Y. WeiX. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27 (2005), 72-81.  doi: 10.1137/S0895479804439948.  Google Scholar

[35]

Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett., 13 (2000), 77-83.  doi: 10.1016/S0893-9659(99)00189-5.  Google Scholar

[36]

Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Ann. Oper. Res., 103 (2001), 371-378.  doi: 10.1023/A:1012993626289.  Google Scholar

[37]

Q. XuC. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2010), 1507-1520.  doi: 10.1137/080741793.  Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.  Google Scholar

[2]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[3]

S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudoinverses, Linear Algebra Appl., 10 (1975), 77-83.   Google Scholar

[4]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979; SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[5]

N. Castro-GonzálezJ. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM. J. Matrix Anal. Appl., 30 (2008), 882-897.  doi: 10.1137/060653366.  Google Scholar

[6]

N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1213-1223.  doi: 10.1016/j.jmaa.2007.10.066.  Google Scholar

[7]

N. Castro-GonzálezM. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, Electron. J. Linear Algebra, 22 (2011), 539-556.  doi: 10.13001/1081-3810.1456.  Google Scholar

[8]

D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6349-7.  Google Scholar

[9]

M. EiermanI. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math., 53 (1988), 265-283.  doi: 10.1007/BF01404464.  Google Scholar

[10]

A. Galántai, Projectors and Projection Methods, Springer, New York, 2004. Google Scholar

[11]

R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013.  Google Scholar

[12]

J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413.  doi: 10.1016/j.camwa.2018.02.006.  Google Scholar

[13]

S. Kirkland and M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, 2012.  Google Scholar

[14]

J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, Appl. Math. Comput., 126 (2002), 181-185.  doi: 10.1016/S0096-3003(00)00149-1.  Google Scholar

[15]

X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, Linear Algebra Appl., 338 (2001), 53-66.  doi: 10.1016/S0024-3795(01)00369-X.  Google Scholar

[16]

X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, Appl. Math. Comput., 140 (2003), 329-340.  doi: 10.1016/S0096-3003(02)00230-8.  Google Scholar

[17]

H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, Int. J. Comput. Math., 95 (2018), 710-720.  doi: 10.1080/00207160.2017.1294689.  Google Scholar

[18]

C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review, 17 (1975), 443-464.  doi: 10.1137/1017044.  Google Scholar

[19]

G. Rong, The error bound of the perturbation of the Drazin inverse, Linear Algebra Appl., 47 (1982), 159-168.  doi: 10.1016/0024-3795(82)90233-6.  Google Scholar

[20]

A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, Numer. Math., 93 (2003), 563-581.  doi: 10.1007/s002110100379.  Google Scholar

[21]

G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, SIAM Review, 19 (1977), 634-662.  doi: 10.1137/1019104.  Google Scholar

[22]

G. W. Stewart, On the numerical analysis of oblique projectors, SIAM J. Matrix Anal. Appl., 32 (2011), 309-348.  doi: 10.1137/100792093.  Google Scholar

[23]

D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, Numer. Linear Algebra Appl., 1 (1994), 151-154.  doi: 10.1002/nla.1680010206.  Google Scholar

[24]

D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), 309-323.  doi: 10.1007/s11075-006-9046-2.  Google Scholar

[25]

J. Y. Vélez-CerradaJ. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161.  doi: 10.1016/j.amc.2009.08.003.  Google Scholar

[26]

P. Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232.   Google Scholar

[27]

Y. Wei, Expressions for the Drazin inverse of a 2 × 2 block matrix, Linear Multilinear Algebra, 45 (1998), 131-146.  doi: 10.1080/03081089808818583.  Google Scholar

[28]

Y. Wei, On the perturbation of the group inverse and oblique projection, Appl. Math. Comput., 98 (1999), 29-42.  doi: 10.1016/S0096-3003(97)10151-5.  Google Scholar

[29]

Y. Wei, Perturbation bound of the Drazin inverse, Appl. Math. Comput., 125 (2002), 231-244.  doi: 10.1016/S0096-3003(00)00126-0.  Google Scholar

[30]

Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.  Google Scholar

[31]

Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157.  doi: 10.1016/j.laa.2017.08.009.  Google Scholar

[32]

Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575.  doi: 10.1002/nla.336.  Google Scholar

[33]

Y. WeiX. LiF. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765-771.  doi: 10.1016/j.laa.2006.06.015.  Google Scholar

[34]

Y. WeiX. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27 (2005), 72-81.  doi: 10.1137/S0895479804439948.  Google Scholar

[35]

Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett., 13 (2000), 77-83.  doi: 10.1016/S0893-9659(99)00189-5.  Google Scholar

[36]

Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Ann. Oper. Res., 103 (2001), 371-378.  doi: 10.1023/A:1012993626289.  Google Scholar

[37]

Q. XuC. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2010), 1507-1520.  doi: 10.1137/080741793.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[6]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[7]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[8]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[10]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[11]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[12]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[13]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[15]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[16]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[17]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[18]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[19]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[20]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

 Impact Factor: 

Metrics

  • PDF downloads (208)
  • HTML views (386)
  • Cited by (3)

Other articles
by authors

[Back to Top]