\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Further results on the perturbation estimations for the Drazin inverse

  • * Corresponding author: H. Ma

    * Corresponding author: H. Ma 
H. Ma is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232)
X. Gao is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232).
Abstract Full Text(HTML) Related Papers Cited by
  • For $n× n$ complex singular matrix $A$ with ind$(A) = k>1$, let $A^D$ be the Drazin inverse of $A$. If a matrix $B = A+E$ with ind$(B) = 1$ is said to be an acute perturbation of $A$ , if $\|E\|$ is small and the spectral radius of $B_gB- A^DA$ satisfies

    $ρ(B_gB- A^DA) < 1,$

    where $B_g$ is the group inverse of $B$ .

    The acute perturbation coincides with the stable perturbation of the group inverse, if the matrix $B$ satisfies geometrical condition:

    ${\mathcal R}(B) \cap {\mathcal N}(A^k) = \{ {\bf 0} \}, {\mathcal N}(B)\cap {\mathcal R}(A^k) = \{ {\bf 0} \}$

    which introduced by Vélez-Cerrada, Robles, and Castro-González, (Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161).

    Furthermore, two examples are provided to illustrate the acute perturbation of the Drazin inverse. We prove the correctness of the conjecture in a special case of ind$(B) = 1$ by Wei (Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157).

    Mathematics Subject Classification: Primary: 15A09; Secondary: 65F20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.
    [2] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.
    [3] S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudoinverses, Linear Algebra Appl., 10 (1975), 77-83. 
    [4] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979; SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719048.ch0.
    [5] N. Castro-GonzálezJ. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM. J. Matrix Anal. Appl., 30 (2008), 882-897.  doi: 10.1137/060653366.
    [6] N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1213-1223.  doi: 10.1016/j.jmaa.2007.10.066.
    [7] N. Castro-GonzálezM. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, Electron. J. Linear Algebra, 22 (2011), 539-556.  doi: 10.13001/1081-3810.1456.
    [8] D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6349-7.
    [9] M. EiermanI. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math., 53 (1988), 265-283.  doi: 10.1007/BF01404464.
    [10] A. Galántai, Projectors and Projection Methods, Springer, New York, 2004.
    [11] R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013.
    [12] J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413.  doi: 10.1016/j.camwa.2018.02.006.
    [13] S. Kirkland and M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, 2012.
    [14] J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, Appl. Math. Comput., 126 (2002), 181-185.  doi: 10.1016/S0096-3003(00)00149-1.
    [15] X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, Linear Algebra Appl., 338 (2001), 53-66.  doi: 10.1016/S0024-3795(01)00369-X.
    [16] X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, Appl. Math. Comput., 140 (2003), 329-340.  doi: 10.1016/S0096-3003(02)00230-8.
    [17] H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, Int. J. Comput. Math., 95 (2018), 710-720.  doi: 10.1080/00207160.2017.1294689.
    [18] C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review, 17 (1975), 443-464.  doi: 10.1137/1017044.
    [19] G. Rong, The error bound of the perturbation of the Drazin inverse, Linear Algebra Appl., 47 (1982), 159-168.  doi: 10.1016/0024-3795(82)90233-6.
    [20] A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, Numer. Math., 93 (2003), 563-581.  doi: 10.1007/s002110100379.
    [21] G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, SIAM Review, 19 (1977), 634-662.  doi: 10.1137/1019104.
    [22] G. W. Stewart, On the numerical analysis of oblique projectors, SIAM J. Matrix Anal. Appl., 32 (2011), 309-348.  doi: 10.1137/100792093.
    [23] D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, Numer. Linear Algebra Appl., 1 (1994), 151-154.  doi: 10.1002/nla.1680010206.
    [24] D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), 309-323.  doi: 10.1007/s11075-006-9046-2.
    [25] J. Y. Vélez-CerradaJ. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161.  doi: 10.1016/j.amc.2009.08.003.
    [26] P. Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232. 
    [27] Y. Wei, Expressions for the Drazin inverse of a 2 × 2 block matrix, Linear Multilinear Algebra, 45 (1998), 131-146.  doi: 10.1080/03081089808818583.
    [28] Y. Wei, On the perturbation of the group inverse and oblique projection, Appl. Math. Comput., 98 (1999), 29-42.  doi: 10.1016/S0096-3003(97)10151-5.
    [29] Y. Wei, Perturbation bound of the Drazin inverse, Appl. Math. Comput., 125 (2002), 231-244.  doi: 10.1016/S0096-3003(00)00126-0.
    [30] Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.
    [31] Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157.  doi: 10.1016/j.laa.2017.08.009.
    [32] Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575.  doi: 10.1002/nla.336.
    [33] Y. WeiX. LiF. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765-771.  doi: 10.1016/j.laa.2006.06.015.
    [34] Y. WeiX. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27 (2005), 72-81.  doi: 10.1137/S0895479804439948.
    [35] Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett., 13 (2000), 77-83.  doi: 10.1016/S0893-9659(99)00189-5.
    [36] Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Ann. Oper. Res., 103 (2001), 371-378.  doi: 10.1023/A:1012993626289.
    [37] Q. XuC. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2010), 1507-1520.  doi: 10.1137/080741793.
  • 加载中
SHARE

Article Metrics

HTML views(1599) PDF downloads(327) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return