March  2019, 9(1): 45-52. doi: 10.3934/naco.2019004

Local smooth representation of solution sets in parametric linear fractional programming problems

1. 

Department of Mathematics, Sichuan University, Chengdu 610065, P. R. China

2. 

Department of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, P. R. China

3. 

Department of Mathematics, Sichuan University, Chengdu 610065, P. R. China

* Corresponding author: Y. P. Fang

Received  November 2017 Revised  May 2018 Published  October 2018

Fund Project: This work was partially supported by the National Science Foundation of China (No. 11471230)and the Scientific Research Foundation of the Education Department of Sichuan Province (No.16ZA0213).

The purpose of this paper is to investigate the structure of the solution sets in parametric linear fractional programming problems. It is shown that the solution set of a parametric linear fractional programming problem with smooth data has a local smooth representation. As a consequence, the corresponding marginal function is differentiable and the solution map admits a differentiable selection. We also give an example to illustrate the result.

Citation: Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004
References:
[1]

E. B. Bajalinov, Linear Fractional Programming: Theory, Methods, Applications and Software, Kluwer Acad. Publ., Boston, 2003. Google Scholar

[2]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[3]

A. CambiniS. Schaible and C. Sodini, Parametric linear fractional programming for an unbounded feasible region, J. Global Optim., 3 (1993), 157-169.  doi: 10.1007/BF01096736.  Google Scholar

[4]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Res. Log., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[5]

Y. P. FangN. J. Huang and X. Q. Yang, Local smooth representations of parametric semiclosed polyhedra with applications to sensitivity in piecewise linear programs, J. Optim. Theory Appl., 155 (2012), 810-839.  doi: 10.1007/s10957-012-0089-3.  Google Scholar

[6]

Y. P. FangK. W. Meng and X. Q. Yang, Piecewise linear multi-criteria programs: the continuous case and its discontinuous generalization, Oper. Res., 60 (2012), 398-404.  doi: 10.1287/opre.1110.1014.  Google Scholar

[7]

A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, 165. Academic Press, Inc., Orlando, FL, 1983.  Google Scholar

[8]

D. T. Luc, Smooth representation of a parametric polyhedral convex set with application to sensitivity in optimization, Proc. Amer. Math. Soc., 125 (1997), 555-567.  doi: 10.1090/S0002-9939-97-03507-7.  Google Scholar

[9]

D. T. Luc and P. H. Dien, Differentiable selection of optimal solutions in parametric linear programming, Proc. Amer. Math. Soc., 125 (1997), 883-892.  doi: 10.1090/S0002-9939-97-03090-6.  Google Scholar

[10]

B. Andrew Martos and V. Whinston, Hyperbolic programming, Naval Res. Logist. Quart., 11 (1960), 135-155.  doi: 10.1002/nav.3800110204.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.  Google Scholar

[12]

K. Swarup, Linear fractional functionals programming, Oper. Res., 13 (1965), 1029-1036.   Google Scholar

[13]

L. V. Thuan and D. T. Luc, On sensitivity in linear multiobjective programming, J. Optim. Theory Appl., 107 (2000), 615-626.  doi: 10.1023/A:1026455401079.  Google Scholar

[14]

H. Wolf, A parametric method for solving the linear fracional programming problem, Oper. Res., 33 (1985), 835-841.  doi: 10.1287/opre.33.4.835.  Google Scholar

[15]

H. Wolf, Parametric analysis in linear fractional programming, Oper. Res., 34 (1986), 930-937.  doi: 10.1287/opre.34.6.930.  Google Scholar

[16]

S. J. Xue, Determining the optimal solution set for linear fractional programming, J. Syst. Eng. Electron., 13 (2002), 40-45.   Google Scholar

[17]

S. J. Xue, A way to find the set of optimal solutions in linear fractional programming, Comm. Appl. Math Comput., 16 (2002), 90-96.   Google Scholar

[18]

X. Q. Yang and N. D. Yen, Structure and weak sharp minimum of the Pareto solution set for piecewise linear multiobjective optimization, J. Optim. Theory Appl., 147 (2010), 113-124.  doi: 10.1007/s10957-010-9710-5.  Google Scholar

[19]

X. Y. Zheng and X. Q. Yang, The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces, Sci. China Ser. A, 51 (2008), 1243-1256.  doi: 10.1007/s11425-008-0021-3.  Google Scholar

show all references

References:
[1]

E. B. Bajalinov, Linear Fractional Programming: Theory, Methods, Applications and Software, Kluwer Acad. Publ., Boston, 2003. Google Scholar

[2]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[3]

A. CambiniS. Schaible and C. Sodini, Parametric linear fractional programming for an unbounded feasible region, J. Global Optim., 3 (1993), 157-169.  doi: 10.1007/BF01096736.  Google Scholar

[4]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Res. Log., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[5]

Y. P. FangN. J. Huang and X. Q. Yang, Local smooth representations of parametric semiclosed polyhedra with applications to sensitivity in piecewise linear programs, J. Optim. Theory Appl., 155 (2012), 810-839.  doi: 10.1007/s10957-012-0089-3.  Google Scholar

[6]

Y. P. FangK. W. Meng and X. Q. Yang, Piecewise linear multi-criteria programs: the continuous case and its discontinuous generalization, Oper. Res., 60 (2012), 398-404.  doi: 10.1287/opre.1110.1014.  Google Scholar

[7]

A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, 165. Academic Press, Inc., Orlando, FL, 1983.  Google Scholar

[8]

D. T. Luc, Smooth representation of a parametric polyhedral convex set with application to sensitivity in optimization, Proc. Amer. Math. Soc., 125 (1997), 555-567.  doi: 10.1090/S0002-9939-97-03507-7.  Google Scholar

[9]

D. T. Luc and P. H. Dien, Differentiable selection of optimal solutions in parametric linear programming, Proc. Amer. Math. Soc., 125 (1997), 883-892.  doi: 10.1090/S0002-9939-97-03090-6.  Google Scholar

[10]

B. Andrew Martos and V. Whinston, Hyperbolic programming, Naval Res. Logist. Quart., 11 (1960), 135-155.  doi: 10.1002/nav.3800110204.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.  Google Scholar

[12]

K. Swarup, Linear fractional functionals programming, Oper. Res., 13 (1965), 1029-1036.   Google Scholar

[13]

L. V. Thuan and D. T. Luc, On sensitivity in linear multiobjective programming, J. Optim. Theory Appl., 107 (2000), 615-626.  doi: 10.1023/A:1026455401079.  Google Scholar

[14]

H. Wolf, A parametric method for solving the linear fracional programming problem, Oper. Res., 33 (1985), 835-841.  doi: 10.1287/opre.33.4.835.  Google Scholar

[15]

H. Wolf, Parametric analysis in linear fractional programming, Oper. Res., 34 (1986), 930-937.  doi: 10.1287/opre.34.6.930.  Google Scholar

[16]

S. J. Xue, Determining the optimal solution set for linear fractional programming, J. Syst. Eng. Electron., 13 (2002), 40-45.   Google Scholar

[17]

S. J. Xue, A way to find the set of optimal solutions in linear fractional programming, Comm. Appl. Math Comput., 16 (2002), 90-96.   Google Scholar

[18]

X. Q. Yang and N. D. Yen, Structure and weak sharp minimum of the Pareto solution set for piecewise linear multiobjective optimization, J. Optim. Theory Appl., 147 (2010), 113-124.  doi: 10.1007/s10957-010-9710-5.  Google Scholar

[19]

X. Y. Zheng and X. Q. Yang, The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces, Sci. China Ser. A, 51 (2008), 1243-1256.  doi: 10.1007/s11425-008-0021-3.  Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

 Impact Factor: 

Metrics

  • PDF downloads (115)
  • HTML views (402)
  • Cited by (0)

Other articles
by authors

[Back to Top]