    March  2019, 9(1): 71-84. doi: 10.3934/naco.2019006

## A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems

 1 Department of Mathematics, Beijing Jiaotong University Haibin College, Cangzhou, China 2 School of Science, Beijing Jiaotong University, Beijing, China

* Corresponding author: chenbingzhen6026@163.com

This paper was presented in the First Symposium on Machine Intelligence and Data Analytics (MIDA)-2017, Beijing, China, December 15-18, 2017.

Received  January 2018 Revised  April 2018 Published  October 2018

In this paper, we derive an implicit symmetric, symplectic and exponentially fitted Runge-Kutta-Nyström (ISSEFRKN) method. The new integrator ISSEFRKN2 is of fourth order and integrates exactly differential systems whose solutions can be expressed as linear combinations of functions from the set $\{\exp(λ t), \exp(-λ t)|λ∈ \mathbb{C}\}$, or equivalently $\{\sin(ω t), \cos(ω t)|λ = iω, ~ω∈ \mathbb{R}\}$. We analysis the periodicity stability of the derived method ISSEFRKN2. Some the existing implicit RKN methods in the literature are used to compare with ISSEFRKN2 for several oscillatory problems. Numerical results show that the method ISSEFRKN2 possess a more accuracy among them.

Citation: Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006
##### References:
  P. Albrecht, The extension of the theory of A-methods to RK methods, In: Numerical Treatment of Differential Equations, Proceedings of the 4th Seminar NUMDIFF-4 (ed. K. Strehmel), Tuebner-Texte Zur Mathematik, Tuebner, Leipzig, (1987), 8–18. Google Scholar  P. Albrecht, A new theoretical approach to Runge Kutta methods, SIAM J. Numerical Anal., 24 (1987), 391-406.  doi: 10.1137/0724030.  Google Scholar  R. A. Al-Khasawneh, F. Ismail and M. Suleiman, Embedded diagonally implicit Runge-Kutta-Nyström 4(3) pair for solving special second-order IVPs, Appl. Math. Comput., 190 (2007), 1803-1814.  doi: 10.1016/j.amc.2007.02.067.  Google Scholar  M. P. Calvo and J. M. Sanz-Serna, High-order symplectic Runge-Kutta-Nyström methods, SIAM J. Sci. Comput., 14 (1993), 1237-1252.  doi: 10.1137/0914073.  Google Scholar  J. P. Coleman and L. Gr. Ixaru, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar  J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1-19.  doi: 10.1016/j.cam.2003.09.042.  Google Scholar  J. M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177 (2007), 479-492.  doi: 10.1016/j.cpc.2007.05.003.  Google Scholar  E. Hairer, C. Lubich and G. Wanner, Symmetric Integration and Reversibility. In Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar  L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004. doi: 10.1007/978-1-4020-2100-8.  Google Scholar  S. N. Jator, Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients, Numer. Algorithms, 70 (2015), 1-18.  doi: 10.1007/s11075-014-9938-5.  Google Scholar  Z. Kalogiratou, Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods, Appl. Math. Comput., 219 (2013), 7406-7412.  doi: 10.1016/j.amc.2012.12.089.  Google Scholar  Z. Kalogiratou, T. Monovasilis and T. E. Simos, A sixth order symmetric and symplectic diagonally implicit Runge-Kutta method, International Conference of Computational Metho. American Institute of Physics, 1618 (2014), 833-838.  doi: 10.1063/1.4897862. Google Scholar  K. W. Moo, N. Senu, F. Ismail and N. M. Arifin, A zero-dissipative phase-fitted fourth order diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems, Math. Probl. Eng., 2014 (2014), 1-8.  doi: 10.1155/2014/985120.  Google Scholar  B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar  M. Z. Qin and W. J. Zhu, Canonical Runge-Kutta-Nyström methods for second order ordinary differential equations, Comput. Math. Applic., 22 (1991), 85-95.  doi: 10.1016/0898-1221(91)90209-M.  Google Scholar  J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numer., 1 (1992), 243-286.  doi: 10.1017/S0962492900002282.  Google Scholar  J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London, 1994. Google Scholar  N. Senu, M. Suleiman, F. Ismail and M. Othman, A new diagonally implicit Runge-Kutta-Nyström method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679-688. Google Scholar  P. W. Sharp, J. M. Fine and K. Burrage, Two stage and three stage diagonally implicit Runge-Nutta-Nyström methods of orders three and four, IMA J. Numer. Anal., 10 (1990), 489-504.  doi: 10.1093/imanum/10.4.489.  Google Scholar  T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions, Comput. Phys. Commun., 115 (1998), 1-8.  doi: 10.1016/S0010-4655(98)00088-5.  Google Scholar  T. E. Simos and J. Vigo-Aguiar, Exponentially fitted symplectic integrator, Phys. Rev. E., 67 (2003), 1-7.  doi: 10.1103/PhysRevE.67.016701.  Google Scholar  G. Vanden Berghe, H. De Meyer, M. Van Daele and T. Van Hecke, Exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 125 (2000), 107-115.  doi: 10.1016/S0377-0427(00)00462-3.  Google Scholar  G. Vanden Berghe, M. Van Daele and H. Van de Vyver, Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points?, J. Comput. Appl. Math., 159 (2003), 217-239.  doi: 10.1016/S0377-0427(03)00450-3.  Google Scholar  P. J. Van der Houwen and B. P. Sommeijer, Diagonally implicit Runge-Nutta-Nyström methods for oscillating problems, SIAM J. Numer. Anal., 26 (1989), 414-429.  doi: 10.1137/0726023.  Google Scholar  X. You and B. Chen, Symmetric and symplectic exponentially fitted Runge-Kutta(-Nyström) methods for Hamiltonian problems, Math. Comput. Simul., 94 (2013), 76-95.  doi: 10.1016/j.matcom.2013.05.010.  Google Scholar

show all references

##### References:
  P. Albrecht, The extension of the theory of A-methods to RK methods, In: Numerical Treatment of Differential Equations, Proceedings of the 4th Seminar NUMDIFF-4 (ed. K. Strehmel), Tuebner-Texte Zur Mathematik, Tuebner, Leipzig, (1987), 8–18. Google Scholar  P. Albrecht, A new theoretical approach to Runge Kutta methods, SIAM J. Numerical Anal., 24 (1987), 391-406.  doi: 10.1137/0724030.  Google Scholar  R. A. Al-Khasawneh, F. Ismail and M. Suleiman, Embedded diagonally implicit Runge-Kutta-Nyström 4(3) pair for solving special second-order IVPs, Appl. Math. Comput., 190 (2007), 1803-1814.  doi: 10.1016/j.amc.2007.02.067.  Google Scholar  M. P. Calvo and J. M. Sanz-Serna, High-order symplectic Runge-Kutta-Nyström methods, SIAM J. Sci. Comput., 14 (1993), 1237-1252.  doi: 10.1137/0914073.  Google Scholar  J. P. Coleman and L. Gr. Ixaru, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar  J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1-19.  doi: 10.1016/j.cam.2003.09.042.  Google Scholar  J. M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177 (2007), 479-492.  doi: 10.1016/j.cpc.2007.05.003.  Google Scholar  E. Hairer, C. Lubich and G. Wanner, Symmetric Integration and Reversibility. In Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar  L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004. doi: 10.1007/978-1-4020-2100-8.  Google Scholar  S. N. Jator, Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients, Numer. Algorithms, 70 (2015), 1-18.  doi: 10.1007/s11075-014-9938-5.  Google Scholar  Z. Kalogiratou, Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods, Appl. Math. Comput., 219 (2013), 7406-7412.  doi: 10.1016/j.amc.2012.12.089.  Google Scholar  Z. Kalogiratou, T. Monovasilis and T. E. Simos, A sixth order symmetric and symplectic diagonally implicit Runge-Kutta method, International Conference of Computational Metho. American Institute of Physics, 1618 (2014), 833-838.  doi: 10.1063/1.4897862. Google Scholar  K. W. Moo, N. Senu, F. Ismail and N. M. Arifin, A zero-dissipative phase-fitted fourth order diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems, Math. Probl. Eng., 2014 (2014), 1-8.  doi: 10.1155/2014/985120.  Google Scholar  B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar  M. Z. Qin and W. J. Zhu, Canonical Runge-Kutta-Nyström methods for second order ordinary differential equations, Comput. Math. Applic., 22 (1991), 85-95.  doi: 10.1016/0898-1221(91)90209-M.  Google Scholar  J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numer., 1 (1992), 243-286.  doi: 10.1017/S0962492900002282.  Google Scholar  J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London, 1994. Google Scholar  N. Senu, M. Suleiman, F. Ismail and M. Othman, A new diagonally implicit Runge-Kutta-Nyström method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679-688. Google Scholar  P. W. Sharp, J. M. Fine and K. Burrage, Two stage and three stage diagonally implicit Runge-Nutta-Nyström methods of orders three and four, IMA J. Numer. Anal., 10 (1990), 489-504.  doi: 10.1093/imanum/10.4.489.  Google Scholar  T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions, Comput. Phys. Commun., 115 (1998), 1-8.  doi: 10.1016/S0010-4655(98)00088-5.  Google Scholar  T. E. Simos and J. Vigo-Aguiar, Exponentially fitted symplectic integrator, Phys. Rev. E., 67 (2003), 1-7.  doi: 10.1103/PhysRevE.67.016701.  Google Scholar  G. Vanden Berghe, H. De Meyer, M. Van Daele and T. Van Hecke, Exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 125 (2000), 107-115.  doi: 10.1016/S0377-0427(00)00462-3.  Google Scholar  G. Vanden Berghe, M. Van Daele and H. Van de Vyver, Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points?, J. Comput. Appl. Math., 159 (2003), 217-239.  doi: 10.1016/S0377-0427(03)00450-3.  Google Scholar  P. J. Van der Houwen and B. P. Sommeijer, Diagonally implicit Runge-Nutta-Nyström methods for oscillating problems, SIAM J. Numer. Anal., 26 (1989), 414-429.  doi: 10.1137/0726023.  Google Scholar  X. You and B. Chen, Symmetric and symplectic exponentially fitted Runge-Kutta(-Nyström) methods for Hamiltonian problems, Math. Comput. Simul., 94 (2013), 76-95.  doi: 10.1016/j.matcom.2013.05.010.  Google Scholar Maximum global error in the solution for problem 3 with $\varepsilon = 0$. Maximum global error in the solution for problem 3 with $\varepsilon = 10^{-3}$.
  Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404  Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122  Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623  Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105  Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373  María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021049  Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153  Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681  Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139  Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4983-5001. doi: 10.3934/dcdsb.2019041  Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021097  Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679  Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056  Weijun Zhou. A globally convergent BFGS method for symmetric nonlinear equations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021020  Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439  Lennard Bakker, Skyler Simmons. Stability of the rhomboidal symmetric-mass orbit. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 1-23. doi: 10.3934/dcds.2015.35.1  Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial & Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727  Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197  Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139  Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021018

Impact Factor: