# American Institute of Mathematical Sciences

March  2019, 9(1): 71-84. doi: 10.3934/naco.2019006

## A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems

 1 Department of Mathematics, Beijing Jiaotong University Haibin College, Cangzhou, China 2 School of Science, Beijing Jiaotong University, Beijing, China

* Corresponding author: chenbingzhen6026@163.com

This paper was presented in the First Symposium on Machine Intelligence and Data Analytics (MIDA)-2017, Beijing, China, December 15-18, 2017.

Received  January 2018 Revised  April 2018 Published  October 2018

In this paper, we derive an implicit symmetric, symplectic and exponentially fitted Runge-Kutta-Nyström (ISSEFRKN) method. The new integrator ISSEFRKN2 is of fourth order and integrates exactly differential systems whose solutions can be expressed as linear combinations of functions from the set $\{\exp(λ t), \exp(-λ t)|λ∈ \mathbb{C}\}$, or equivalently $\{\sin(ω t), \cos(ω t)|λ = iω, ~ω∈ \mathbb{R}\}$. We analysis the periodicity stability of the derived method ISSEFRKN2. Some the existing implicit RKN methods in the literature are used to compare with ISSEFRKN2 for several oscillatory problems. Numerical results show that the method ISSEFRKN2 possess a more accuracy among them.

Citation: Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006
##### References:
 [1] P. Albrecht, The extension of the theory of A-methods to RK methods, In: Numerical Treatment of Differential Equations, Proceedings of the 4th Seminar NUMDIFF-4 (ed. K. Strehmel), Tuebner-Texte Zur Mathematik, Tuebner, Leipzig, (1987), 8–18.  Google Scholar [2] P. Albrecht, A new theoretical approach to Runge Kutta methods, SIAM J. Numerical Anal., 24 (1987), 391-406.  doi: 10.1137/0724030.  Google Scholar [3] R. A. Al-Khasawneh, F. Ismail and M. Suleiman, Embedded diagonally implicit Runge-Kutta-Nyström 4(3) pair for solving special second-order IVPs, Appl. Math. Comput., 190 (2007), 1803-1814.  doi: 10.1016/j.amc.2007.02.067.  Google Scholar [4] M. P. Calvo and J. M. Sanz-Serna, High-order symplectic Runge-Kutta-Nyström methods, SIAM J. Sci. Comput., 14 (1993), 1237-1252.  doi: 10.1137/0914073.  Google Scholar [5] J. P. Coleman and L. Gr. Ixaru, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar [6] J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1-19.  doi: 10.1016/j.cam.2003.09.042.  Google Scholar [7] J. M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177 (2007), 479-492.  doi: 10.1016/j.cpc.2007.05.003.  Google Scholar [8] E. Hairer, C. Lubich and G. Wanner, Symmetric Integration and Reversibility. In Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar [9] L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004. doi: 10.1007/978-1-4020-2100-8.  Google Scholar [10] S. N. Jator, Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients, Numer. Algorithms, 70 (2015), 1-18.  doi: 10.1007/s11075-014-9938-5.  Google Scholar [11] Z. Kalogiratou, Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods, Appl. Math. Comput., 219 (2013), 7406-7412.  doi: 10.1016/j.amc.2012.12.089.  Google Scholar [12] Z. Kalogiratou, T. Monovasilis and T. E. Simos, A sixth order symmetric and symplectic diagonally implicit Runge-Kutta method, International Conference of Computational Metho. American Institute of Physics, 1618 (2014), 833-838.  doi: 10.1063/1.4897862.  Google Scholar [13] K. W. Moo, N. Senu, F. Ismail and N. M. Arifin, A zero-dissipative phase-fitted fourth order diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems, Math. Probl. Eng., 2014 (2014), 1-8.  doi: 10.1155/2014/985120.  Google Scholar [14] B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar [15] M. Z. Qin and W. J. Zhu, Canonical Runge-Kutta-Nyström methods for second order ordinary differential equations, Comput. Math. Applic., 22 (1991), 85-95.  doi: 10.1016/0898-1221(91)90209-M.  Google Scholar [16] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numer., 1 (1992), 243-286.  doi: 10.1017/S0962492900002282.  Google Scholar [17] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London, 1994.  Google Scholar [18] N. Senu, M. Suleiman, F. Ismail and M. Othman, A new diagonally implicit Runge-Kutta-Nyström method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679-688.   Google Scholar [19] P. W. Sharp, J. M. Fine and K. Burrage, Two stage and three stage diagonally implicit Runge-Nutta-Nyström methods of orders three and four, IMA J. Numer. Anal., 10 (1990), 489-504.  doi: 10.1093/imanum/10.4.489.  Google Scholar [20] T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions, Comput. Phys. Commun., 115 (1998), 1-8.  doi: 10.1016/S0010-4655(98)00088-5.  Google Scholar [21] T. E. Simos and J. Vigo-Aguiar, Exponentially fitted symplectic integrator, Phys. Rev. E., 67 (2003), 1-7.  doi: 10.1103/PhysRevE.67.016701.  Google Scholar [22] G. Vanden Berghe, H. De Meyer, M. Van Daele and T. Van Hecke, Exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 125 (2000), 107-115.  doi: 10.1016/S0377-0427(00)00462-3.  Google Scholar [23] G. Vanden Berghe, M. Van Daele and H. Van de Vyver, Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points?, J. Comput. Appl. Math., 159 (2003), 217-239.  doi: 10.1016/S0377-0427(03)00450-3.  Google Scholar [24] P. J. Van der Houwen and B. P. Sommeijer, Diagonally implicit Runge-Nutta-Nyström methods for oscillating problems, SIAM J. Numer. Anal., 26 (1989), 414-429.  doi: 10.1137/0726023.  Google Scholar [25] X. You and B. Chen, Symmetric and symplectic exponentially fitted Runge-Kutta(-Nyström) methods for Hamiltonian problems, Math. Comput. Simul., 94 (2013), 76-95.  doi: 10.1016/j.matcom.2013.05.010.  Google Scholar

show all references

##### References:
 [1] P. Albrecht, The extension of the theory of A-methods to RK methods, In: Numerical Treatment of Differential Equations, Proceedings of the 4th Seminar NUMDIFF-4 (ed. K. Strehmel), Tuebner-Texte Zur Mathematik, Tuebner, Leipzig, (1987), 8–18.  Google Scholar [2] P. Albrecht, A new theoretical approach to Runge Kutta methods, SIAM J. Numerical Anal., 24 (1987), 391-406.  doi: 10.1137/0724030.  Google Scholar [3] R. A. Al-Khasawneh, F. Ismail and M. Suleiman, Embedded diagonally implicit Runge-Kutta-Nyström 4(3) pair for solving special second-order IVPs, Appl. Math. Comput., 190 (2007), 1803-1814.  doi: 10.1016/j.amc.2007.02.067.  Google Scholar [4] M. P. Calvo and J. M. Sanz-Serna, High-order symplectic Runge-Kutta-Nyström methods, SIAM J. Sci. Comput., 14 (1993), 1237-1252.  doi: 10.1137/0914073.  Google Scholar [5] J. P. Coleman and L. Gr. Ixaru, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar [6] J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1-19.  doi: 10.1016/j.cam.2003.09.042.  Google Scholar [7] J. M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177 (2007), 479-492.  doi: 10.1016/j.cpc.2007.05.003.  Google Scholar [8] E. Hairer, C. Lubich and G. Wanner, Symmetric Integration and Reversibility. In Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar [9] L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004. doi: 10.1007/978-1-4020-2100-8.  Google Scholar [10] S. N. Jator, Implicit third derivative Runge-Kutta-Nyström method with trigonometric coefficients, Numer. Algorithms, 70 (2015), 1-18.  doi: 10.1007/s11075-014-9938-5.  Google Scholar [11] Z. Kalogiratou, Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods, Appl. Math. Comput., 219 (2013), 7406-7412.  doi: 10.1016/j.amc.2012.12.089.  Google Scholar [12] Z. Kalogiratou, T. Monovasilis and T. E. Simos, A sixth order symmetric and symplectic diagonally implicit Runge-Kutta method, International Conference of Computational Metho. American Institute of Physics, 1618 (2014), 833-838.  doi: 10.1063/1.4897862.  Google Scholar [13] K. W. Moo, N. Senu, F. Ismail and N. M. Arifin, A zero-dissipative phase-fitted fourth order diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems, Math. Probl. Eng., 2014 (2014), 1-8.  doi: 10.1155/2014/985120.  Google Scholar [14] B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar [15] M. Z. Qin and W. J. Zhu, Canonical Runge-Kutta-Nyström methods for second order ordinary differential equations, Comput. Math. Applic., 22 (1991), 85-95.  doi: 10.1016/0898-1221(91)90209-M.  Google Scholar [16] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numer., 1 (1992), 243-286.  doi: 10.1017/S0962492900002282.  Google Scholar [17] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London, 1994.  Google Scholar [18] N. Senu, M. Suleiman, F. Ismail and M. Othman, A new diagonally implicit Runge-Kutta-Nyström method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679-688.   Google Scholar [19] P. W. Sharp, J. M. Fine and K. Burrage, Two stage and three stage diagonally implicit Runge-Nutta-Nyström methods of orders three and four, IMA J. Numer. Anal., 10 (1990), 489-504.  doi: 10.1093/imanum/10.4.489.  Google Scholar [20] T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions, Comput. Phys. Commun., 115 (1998), 1-8.  doi: 10.1016/S0010-4655(98)00088-5.  Google Scholar [21] T. E. Simos and J. Vigo-Aguiar, Exponentially fitted symplectic integrator, Phys. Rev. E., 67 (2003), 1-7.  doi: 10.1103/PhysRevE.67.016701.  Google Scholar [22] G. Vanden Berghe, H. De Meyer, M. Van Daele and T. Van Hecke, Exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 125 (2000), 107-115.  doi: 10.1016/S0377-0427(00)00462-3.  Google Scholar [23] G. Vanden Berghe, M. Van Daele and H. Van de Vyver, Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points?, J. Comput. Appl. Math., 159 (2003), 217-239.  doi: 10.1016/S0377-0427(03)00450-3.  Google Scholar [24] P. J. Van der Houwen and B. P. Sommeijer, Diagonally implicit Runge-Nutta-Nyström methods for oscillating problems, SIAM J. Numer. Anal., 26 (1989), 414-429.  doi: 10.1137/0726023.  Google Scholar [25] X. You and B. Chen, Symmetric and symplectic exponentially fitted Runge-Kutta(-Nyström) methods for Hamiltonian problems, Math. Comput. Simul., 94 (2013), 76-95.  doi: 10.1016/j.matcom.2013.05.010.  Google Scholar
Periodicity regions for the method ISSEFRKN2.
Maximum global error in the solution for Problem 1.
Maximum global error in the solution for Problem 2.
Maximum global error in the solution for problem 3 with $\varepsilon = 0$.
Maximum global error in the solution for problem 3 with $\varepsilon = 10^{-3}$.
Maximum global error in the solution for problem 4.
 [1] Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404 [2] Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122 [3] Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623 [4] Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105 [5] Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 [6] Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153 [7] Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139 [8] Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4983-5001. doi: 10.3934/dcdsb.2019041 [9] Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681 [10] Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 [11] Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056 [12] Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial & Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727 [13] Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197 [14] Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439 [15] Lennard Bakker, Skyler Simmons. Stability of the rhomboidal symmetric-mass orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 1-23. doi: 10.3934/dcds.2015.35.1 [16] Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020139 [17] Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079 [18] Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295 [19] Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399 [20] Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176

Impact Factor:

## Tools

Article outline

Figures and Tables