|
H. An
and Z. Bai
, A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. Numer. Math., 57 (2007)
, 235-252.
doi: 10.1016/j.apnum.2006.02.007.
|
|
H. An
, Z. Mo
and X. Liu
, A choice of forcing terms in inexact Newton method, J. Comput. Appl. Math., 20 (2007)
, 47-60.
doi: 10.1016/j.cam.2005.12.030.
|
|
O. Axelsson
and G. F. Carey
, On the numerical solution of two-point singularly perturbed boundary value problems, Comput. Method Appl. Mech. Eng., 50 (1985)
, 217-229.
doi: 10.1016/0045-7825(85)90094-5.
|
|
O. Axelsson
and M. Nikolova
, Avoiding slave points in an adaptive refinement procedure for convection-diffusion problems in 2D, Computing, 61 (1998)
, 331-357.
doi: 10.1007/BF02684384.
|
|
Z. Bai
, G. H. Golub
and M. K. Ng
, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003)
, 603-626.
doi: 10.1137/S0895479801395458.
|
|
Z. Bai
and X. Guo
, On Newton-HSS method for systems of nonlinear equations with positive-definite Jacobian matrices, J. Comput. Math., 28 (2010)
, 235-260.
doi: 10.4208/jcm.2009.10-m2836.
|
|
S. Bellavia
and B. Morini
, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput., 23 (2001)
, 940-960.
doi: 10.1137/S1064827599363976.
|
|
M. Chen
, R. Lin
and Q. Wu
, Convergence analysis of the modified Newton-HSS method under the Hölder continuous condition, J. Comput. Appl. Math., 264 (2014)
, 115-130.
doi: 10.1016/j.cam.2013.12.047.
|
|
M. Chen
, Q. Wu
and R. Lin
, Semilocal convergence analysis for the Modified Newton-HSS method under the H$ö$lder condition, Numer. Algor., 72 (2016)
, 667-685.
doi: 10.1007/s11075-015-0061-z.
|
|
R. S. Dembo
, S. C. Eisenstat
and T. Steihaug
, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982)
, 400-408.
doi: 10.1137/0719025.
|
|
O. P. Ferreira
and B. F. Svaiter
, Kantorovich's majorants principle for Newton's method, Comput. Optim. Appl., 42 (2009)
, 213-229.
doi: 10.1007/s10589-007-9082-4.
|
|
X. Guo
, On semilocal convergence of inexact Newton methods, J. Comput. Math., 25 (2007)
, 231-242.
|
|
X. Guo
, On the convergence of Newton's method in Banach space, Journal of Zhejiang University(Sciences Edition), 27 (2000)
, 484-492.
|
|
X. Guo
and I. S. Duff
, Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations, Numer. Linear Algebra Appl., 18 (2011)
, 299-315.
doi: 10.1002/nla.713.
|
|
L. V. Kantorovich and G. P. Akilov,
Functional Analysis in Normed Spaces, Oxford, Pergamon, 1964.
|
|
C. Li
and K. F. NG
, Majorizing functions and convergence of the Gauss-Newton method for convex composite optimation, SIAM J. Optim., 18 (2007)
, 613-642.
doi: 10.1137/06065622X.
|
|
J. M. Ortega and W. C. Rheinbolt,
Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
|
|
W. C. Rheinboldt,
Methods of Solving Systems of Nonlinear Equations, 2$^{nd}$ edition, SIAM, Philadelphia, 1998.
doi: 10.1137/1.9781611970012.
|
|
Y. Saad
and M. Schultz
, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear system, SIAM J. Sci. Stat. Comput., 7 (1986)
, 856-869.
doi: 10.1137/0907058.
|
|
W. Shen
and C. Li
, Kantorovich-type convergence criterion for inexact Newton methods, Appl. Numer. Math., 59 (2009)
, 1599-1611.
doi: 10.1016/j.apnum.2008.11.002.
|
|
X. Wang
, Convergence of Newton's method and inverse function theorem in Banach space, Math. Comput., 68 (1999)
, 169-185.
doi: 10.1090/S0025-5718-99-00999-0.
|
|
A. Yang
and Y. Wu
, Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices, Numer. Algebra, Control. Optim., 2 (2012)
, 839-853.
doi: 10.3934/naco.2012.2.839.
|
|
H. Zhong
, G. Chen
and X. Guo
, On preconditioned modified Newton-MHSS method for systems of nonlinear equations with complex symmetric Jacobian matrices, Numer. Algor., 69 (2015)
, 553-567.
doi: 10.1007/s11075-014-9912-2.
|
|
H. Zhong
, G. Wu
and G. Chen
, A flexible and adaptive simpler block GMRES with deflated restarting for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 282 (2015)
, 139-156.
doi: 10.1016/j.cam.2014.12.040.
|